268 research outputs found

    On Conservative and Monotone One-dimensional Cellular Automata and Their Particle Representation

    Full text link
    Number-conserving (or {\em conservative}) cellular automata have been used in several contexts, in particular traffic models, where it is natural to think about them as systems of interacting particles. In this article we consider several issues concerning one-dimensional cellular automata which are conservative, monotone (specially ``non-increasing''), or that allow a weaker kind of conservative dynamics. We introduce a formalism of ``particle automata'', and discuss several properties that they may exhibit, some of which, like anticipation and momentum preservation, happen to be intrinsic to the conservative CA they represent. For monotone CA we give a characterization, and then show that they too are equivalent to the corresponding class of particle automata. Finally, we show how to determine, for a given CA and a given integer bb, whether its states admit a bb-neighborhood-dependent relabelling whose sum is conserved by the CA iteration; this can be used to uncover conservative principles and particle-like behavior underlying the dynamics of some CA. Complements at {\tt http://www.dim.uchile.cl/\verb' 'anmoreir/ncca}Comment: 38 pages, 2 figures. To appear in Theo. Comp. Sc. Several changes throughout the text; major change in section 4.

    On conservative and monotone one-dimensional cellular automata and their particle representation

    Get PDF
    AbstractNumber-conserving (or conservative) cellular automata (CA) have been used in several contexts, in particular traffic models, where it is natural to think about them as systems of interacting particles. In this article we consider several issues concerning one-dimensional cellular automata which are conservative, monotone (specially “non-increasing”), or that allow a weaker kind of conservative dynamics. We introduce a formalism of “particle automata”, and discuss several properties that they may exhibit, some of which, like anticipation and momentum preservation, happen to be intrinsic to the conservative CA they represent. For monotone CA we give a characterization, and then show that they too are equivalent to the corresponding class of particle automata. Finally, we show how to determine, for a given CA and a given integer b, whether its states admit a b-neighborhood-dependent relabeling whose sum is conserved by the CA iteration; this can be used to uncover conservative principles and particle-like behavior underlying the dynamics of some CA.Complements at http://www.dim.uchile.cl/~anmoreir/ncc

    Cellular automaton supercolliders

    Get PDF
    Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular-automaton analogous of localizations or quasi-local collective excitations travelling in a spatially extended non-linear medium. They can be considered as binary strings or symbols travelling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyse what types of interaction occur between gliders travelling on a cellular automaton `cyclotron' and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in non-linear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analysed via implementation of cyclic tag systems

    A split-and-perturb decomposition of number-conserving cellular automata

    Full text link
    This paper concerns dd-dimensional cellular automata with the von Neumann neighborhood that conserve the sum of the states of all their cells. These automata, called number-conserving or density-conserving cellular automata, are of particular interest to mathematicians, computer scientists and physicists, as they can serve as models of physical phenomena obeying some conservation law. We propose a new approach to study such cellular automata that works in any dimension dd and for any set of states QQ. Essentially, the local rule of a cellular automaton is decomposed into two parts: a split function and a perturbation. This decomposition is unique and, moreover, the set of all possible split functions has a very simple structure, while the set of all perturbations forms a linear space and is therefore very easy to describe in terms of its basis. We show how this approach allows to find all number-conserving cellular automata in many cases of dd and QQ. In particular, we find all three-dimensional number-conserving CAs with three states, which until now was beyond the capabilities of computers
    corecore