403 research outputs found

    On computing tree and path decompositions with metric constraints on the bags

    Get PDF
    We here investigate on the complexity of computing the \emph{tree-length} and the \emph{tree-breadth} of any graph GG, that are respectively the best possible upper-bounds on the diameter and the radius of the bags in a tree decomposition of GG. \emph{Path-length} and \emph{path-breadth} are similarly defined and studied for path decompositions. So far, it was already known that tree-length is NP-hard to compute. We here prove it is also the case for tree-breadth, path-length and path-breadth. Furthermore, we provide a more detailed analysis on the complexity of computing the tree-breadth. In particular, we show that graphs with tree-breadth one are in some sense the hardest instances for the problem of computing the tree-breadth. We give new properties of graphs with tree-breadth one. Then we use these properties in order to recognize in polynomial-time all graphs with tree-breadth one that are planar or bipartite graphs. On the way, we relate tree-breadth with the notion of \emph{kk-good} tree decompositions (for k=1k=1), that have been introduced in former work for routing. As a byproduct of the above relation, we prove that deciding on the existence of a kk-good tree decomposition is NP-complete (even if k=1k=1). All this answers open questions from the literature.Comment: 50 pages, 39 figure

    Parameterized Complexity of Fair Bisection: (FPT-Approximation meets Unbreakability)

    Get PDF

    Sparsest Cut on Bounded Treewidth Graphs: Algorithms and Hardness Results

    Full text link
    We give a 2-approximation algorithm for Non-Uniform Sparsest Cut that runs in time nO(k)n^{O(k)}, where kk is the treewidth of the graph. This improves on the previous 22k2^{2^k}-approximation in time \poly(n) 2^{O(k)} due to Chlamt\'a\v{c} et al. To complement this algorithm, we show the following hardness results: If the Non-Uniform Sparsest Cut problem has a ρ\rho-approximation for series-parallel graphs (where ρ≄1\rho \geq 1), then the Max Cut problem has an algorithm with approximation factor arbitrarily close to 1/ρ1/\rho. Hence, even for such restricted graphs (which have treewidth 2), the Sparsest Cut problem is NP-hard to approximate better than 17/16−ϔ17/16 - \epsilon for Ï”>0\epsilon > 0; assuming the Unique Games Conjecture the hardness becomes 1/αGW−ϔ1/\alpha_{GW} - \epsilon. For graphs with large (but constant) treewidth, we show a hardness result of 2−ϔ2 - \epsilon assuming the Unique Games Conjecture. Our algorithm rounds a linear program based on (a subset of) the Sherali-Adams lift of the standard Sparsest Cut LP. We show that even for treewidth-2 graphs, the LP has an integrality gap close to 2 even after polynomially many rounds of Sherali-Adams. Hence our approach cannot be improved even on such restricted graphs without using a stronger relaxation

    Treewidth distance on phylogenetic trees

    Get PDF
    In this article we study the treewidth of the display graph, an auxiliary graph structure obtained from the fusion of phylogenetic (i.e., evolutionary) trees at their leaves. Earlier work has shown that the treewidth of the display graph is bounded if the trees are in some formal sense topologically similar. Here we further expand upon this relationship. We analyse a number of reduction rules, commonly used in the phylogenetics literature to obtain fixed parameter tractable algorithms. In some cases (the subtree reduction) the reduction rules behave similarly with respect to treewidth, while others (the cluster reduction) behave very differently, and the behaviour of the chain reduction is particularly intriguing because of its link with graph separators and forbidden minors. We also show that the gap between treewidth and Tree Bisection and Reconnect (TBR) distance can be infinitely large, and that unlike, for example, planar graphs the treewidth of the display graph can be as much as linear in its number of vertices. A number of other auxiliary results are given. We conclude with a discussion and list a number of open problems
    • 

    corecore