334 research outputs found

    Complexity Analysis of Reed-Solomon Decoding over GF(2^m) Without Using Syndromes

    Get PDF
    For the majority of the applications of Reed-Solomon (RS) codes, hard decision decoding is based on syndromes. Recently, there has been renewed interest in decoding RS codes without using syndromes. In this paper, we investigate the complexity of syndromeless decoding for RS codes, and compare it to that of syndrome-based decoding. Aiming to provide guidelines to practical applications, our complexity analysis differs in several aspects from existing asymptotic complexity analysis, which is typically based on multiplicative fast Fourier transform (FFT) techniques and is usually in big O notation. First, we focus on RS codes over characteristic-2 fields, over which some multiplicative FFT techniques are not applicable. Secondly, due to moderate block lengths of RS codes in practice, our analysis is complete since all terms in the complexities are accounted for. Finally, in addition to fast implementation using additive FFT techniques, we also consider direct implementation, which is still relevant for RS codes with moderate lengths. Comparing the complexities of both syndromeless and syndrome-based decoding algorithms based on direct and fast implementations, we show that syndromeless decoding algorithms have higher complexities than syndrome-based ones for high rate RS codes regardless of the implementation. Both errors-only and errors-and-erasures decoding are considered in this paper. We also derive tighter bounds on the complexities of fast polynomial multiplications based on Cantor's approach and the fast extended Euclidean algorithm.Comment: 11 pages, submitted to EURASIP Journal on Wireless Communications and Networkin

    On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays

    Get PDF
    A new very large scale integration (VLSI) design of a pipeline Reed-Solomon decoder is presented. The transform decoding technique used in a previous article is replaced by a time domain algorithm through a detailed comparison of their VLSI implementations. A new architecture that implements the time domain algorithm permits efficient pipeline processing with reduced circuitry. Erasure correction capability is also incorporated with little additional complexity. By using a multiplexing technique, a new implementation of Euclid's algorithm maintains the throughput rate with less circuitry. Such improvements result in both enhanced capability and significant reduction in silicon area

    Study of application of practical performance criteria for the implementation of efficient error-reduction coding Final report

    Get PDF
    Criteria for implementation of efficient error reduction codin

    Sub-quadratic Decoding of One-point Hermitian Codes

    Get PDF
    We present the first two sub-quadratic complexity decoding algorithms for one-point Hermitian codes. The first is based on a fast realisation of the Guruswami-Sudan algorithm by using state-of-the-art algorithms from computer algebra for polynomial-ring matrix minimisation. The second is a Power decoding algorithm: an extension of classical key equation decoding which gives a probabilistic decoding algorithm up to the Sudan radius. We show how the resulting key equations can be solved by the same methods from computer algebra, yielding similar asymptotic complexities.Comment: New version includes simulation results, improves some complexity results, as well as a number of reviewer corrections. 20 page

    A Rank-Metric Approach to Error Control in Random Network Coding

    Full text link
    The problem of error control in random linear network coding is addressed from a matrix perspective that is closely related to the subspace perspective of K\"otter and Kschischang. A large class of constant-dimension subspace codes is investigated. It is shown that codes in this class can be easily constructed from rank-metric codes, while preserving their distance properties. Moreover, it is shown that minimum distance decoding of such subspace codes can be reformulated as a generalized decoding problem for rank-metric codes where partial information about the error is available. This partial information may be in the form of erasures (knowledge of an error location but not its value) and deviations (knowledge of an error value but not its location). Taking erasures and deviations into account (when they occur) strictly increases the error correction capability of a code: if μ\mu erasures and δ\delta deviations occur, then errors of rank tt can always be corrected provided that 2t≤d−1+μ+δ2t \leq d - 1 + \mu + \delta, where dd is the minimum rank distance of the code. For Gabidulin codes, an important family of maximum rank distance codes, an efficient decoding algorithm is proposed that can properly exploit erasures and deviations. In a network coding application where nn packets of length MM over FqF_q are transmitted, the complexity of the decoding algorithm is given by O(dM)O(dM) operations in an extension field FqnF_{q^n}.Comment: Minor corrections; 42 pages, to be published at the IEEE Transactions on Information Theor
    • …
    corecore