23,551 research outputs found

    On computing the diameter of a point set in high dimensional Euclidean space

    Get PDF
    We consider the problem of computing the diameter of a set of nn points in dd-dimensional Euclidean space under Euclidean distance function. We describe an algorithm that in time O(dnlogn+n2)O(dnlog n +n^{2}) finds with high probability an arbitrarily close approximation of the diameter. For large values of dd the complexity bound of our algorithm is a substantial improvement over the complexity bounds of previously known exact algorithms. Computing and approximating the diameter are fundamental primitives in high dimensional computational geometry and find practical application, for example, in clustering operations for image databases

    Exact Computation of a Manifold Metric, via Lipschitz Embeddings and Shortest Paths on a Graph

    Full text link
    Data-sensitive metrics adapt distances locally based the density of data points with the goal of aligning distances and some notion of similarity. In this paper, we give the first exact algorithm for computing a data-sensitive metric called the nearest neighbor metric. In fact, we prove the surprising result that a previously published 33-approximation is an exact algorithm. The nearest neighbor metric can be viewed as a special case of a density-based distance used in machine learning, or it can be seen as an example of a manifold metric. Previous computational research on such metrics despaired of computing exact distances on account of the apparent difficulty of minimizing over all continuous paths between a pair of points. We leverage the exact computation of the nearest neighbor metric to compute sparse spanners and persistent homology. We also explore the behavior of the metric built from point sets drawn from an underlying distribution and consider the more general case of inputs that are finite collections of path-connected compact sets. The main results connect several classical theories such as the conformal change of Riemannian metrics, the theory of positive definite functions of Schoenberg, and screw function theory of Schoenberg and Von Neumann. We develop novel proof techniques based on the combination of screw functions and Lipschitz extensions that may be of independent interest.Comment: 15 page

    Exploiting Metric Structure for Efficient Private Query Release

    Get PDF
    We consider the problem of privately answering queries defined on databases which are collections of points belonging to some metric space. We give simple, computationally efficient algorithms for answering distance queries defined over an arbitrary metric. Distance queries are specified by points in the metric space, and ask for the average distance from the query point to the points contained in the database, according to the specified metric. Our algorithms run efficiently in the database size and the dimension of the space, and operate in both the online query release setting, and the offline setting in which they must in polynomial time generate a fixed data structure which can answer all queries of interest. This represents one of the first subclasses of linear queries for which efficient algorithms are known for the private query release problem, circumventing known hardness results for generic linear queries

    On Geometric Alignment in Low Doubling Dimension

    Full text link
    In real-world, many problems can be formulated as the alignment between two geometric patterns. Previously, a great amount of research focus on the alignment of 2D or 3D patterns, especially in the field of computer vision. Recently, the alignment of geometric patterns in high dimension finds several novel applications, and has attracted more and more attentions. However, the research is still rather limited in terms of algorithms. To the best of our knowledge, most existing approaches for high dimensional alignment are just simple extensions of their counterparts for 2D and 3D cases, and often suffer from the issues such as high complexities. In this paper, we propose an effective framework to compress the high dimensional geometric patterns and approximately preserve the alignment quality. As a consequence, existing alignment approach can be applied to the compressed geometric patterns and thus the time complexity is significantly reduced. Our idea is inspired by the observation that high dimensional data often has a low intrinsic dimension. We adopt the widely used notion "doubling dimension" to measure the extents of our compression and the resulting approximation. Finally, we test our method on both random and real datasets, the experimental results reveal that running the alignment algorithm on compressed patterns can achieve similar qualities, comparing with the results on the original patterns, but the running times (including the times cost for compression) are substantially lower
    • …
    corecore