741 research outputs found

    Accurate and Efficient Expression Evaluation and Linear Algebra

    Full text link
    We survey and unify recent results on the existence of accurate algorithms for evaluating multivariate polynomials, and more generally for accurate numerical linear algebra with structured matrices. By "accurate" we mean that the computed answer has relative error less than 1, i.e., has some correct leading digits. We also address efficiency, by which we mean algorithms that run in polynomial time in the size of the input. Our results will depend strongly on the model of arithmetic: Most of our results will use the so-called Traditional Model (TM). We give a set of necessary and sufficient conditions to decide whether a high accuracy algorithm exists in the TM, and describe progress toward a decision procedure that will take any problem and provide either a high accuracy algorithm or a proof that none exists. When no accurate algorithm exists in the TM, it is natural to extend the set of available accurate operations by a library of additional operations, such as x+y+zx+y+z, dot products, or indeed any enumerable set which could then be used to build further accurate algorithms. We show how our accurate algorithms and decision procedure for finding them extend to this case. Finally, we address other models of arithmetic, and the relationship between (im)possibility in the TM and (in)efficient algorithms operating on numbers represented as bit strings.Comment: 49 pages, 6 figures, 1 tabl

    On powers of general tridiagonal matrices

    Full text link

    Global spectrum fluctuations for the β\beta-Hermite and β\beta-Laguerre ensembles via matrix models

    Full text link
    We study the global spectrum fluctuations for β\beta-Hermite and β\beta-Laguerre ensembles via the tridiagonal matrix models introduced in \cite{dumitriu02}, and prove that the fluctuations describe a Gaussian process on monomials. We extend our results to slightly larger classes of random matrices.Comment: 43 pages, 2 figures; typos correcte

    Spectral Approximation for Quasiperiodic Jacobi Operators

    Full text link
    Quasiperiodic Jacobi operators arise as mathematical models of quasicrystals and in more general studies of structures exhibiting aperiodic order. The spectra of these self-adjoint operators can be quite exotic, such as Cantor sets, and their fine properties yield insight into associated dynamical systems. Quasiperiodic operators can be approximated by periodic ones, the spectra of which can be computed via two finite dimensional eigenvalue problems. Since long periods are necessary to get detailed approximations, both computational efficiency and numerical accuracy become a concern. We describe a simple method for numerically computing the spectrum of a period-KK Jacobi operator in O(K2)O(K^2) operations, and use it to investigate the spectra of Schr\"odinger operators with Fibonacci, period doubling, and Thue-Morse potentials
    • …
    corecore