11,309 research outputs found

    The Least-core and Nucleolus of Path Cooperative Games

    Full text link
    Cooperative games provide an appropriate framework for fair and stable profit distribution in multiagent systems. In this paper, we study the algorithmic issues on path cooperative games that arise from the situations where some commodity flows through a network. In these games, a coalition of edges or vertices is successful if it enables a path from the source to the sink in the network, and lose otherwise. Based on dual theory of linear programming and the relationship with flow games, we provide the characterizations on the CS-core, least-core and nucleolus of path cooperative games. Furthermore, we show that the least-core and nucleolus are polynomially solvable for path cooperative games defined on both directed and undirected network

    The complexity of the nucleolus in compact games

    Get PDF
    This is the author accepted manuscript. The final version is available from ACM via the DOI in this recordThe nucleolus is a well-known solution concept for coalitional games to fairly distribute the total available worth among the players. The nucleolus is known to be NP-hard to compute over compact coalitional games, that is, over games whose functions specifying the worth associated with each coalition are encoded in terms of polynomially computable functions over combinatorial structures. In particular, hardness results have been exhibited over minimum spanning tree games, threshold games, and flow games. However, due to its intricate definition involving reasoning over exponentially many coalitions, a nontrivial upper bound on its complexity was missing in the literature and looked for. This article faces this question and precisely characterizes the complexity of the nucleolus, by exhibiting an upper bound that holds on any class of compact games, and by showing that this bound is tight even on the (structurally simple) class of graph games. The upper bound is established by proposing a variant of the standard linear-programming based algorithm for nucleolus computation and by studying a framework for reasoning about succinctly specified linear programs, which are contributions of interest in their own. The hardness result is based on an elaborate combinatorial reduction, which is conceptually relevant for it provides a "measure" of the computational cost to be paid for guaranteeing voluntary participation to the distribution process. In fact, the pre-nucleolus is known to be efficiently computable over graph games, with this solution concept being defined as the nucleolus but without guaranteeing that each player is granted with it at least the worth she can get alone, that is, without collaborating with the other players. Finally, this article identifies relevant tractable classes of coalitional games, based on the notion of type of a player. Indeed, in most applications where many players are involved, it is often the case that such players do belong in fact to a limited number of classes, which is known in advance and may be exploited for computing the nucleolus in a fast way.Part of E. Malizia’s work was supported by the European Commission through the European Social Fund and by Calabria Regio

    Pareto optimality in the kidney exchange problem

    Get PDF
    summary:To overcome the shortage of cadaveric kidneys available for transplantation, several countries organize systematic kidney exchange programs. The kidney exchange problem can be modelled as a cooperative game between incompatible patient-donor pairs whose solutions are permutations of players representing cyclic donations. We show that the problems to decide whether a given permutation is not (weakly) Pareto optimal are NP-complete

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Pushdown reachability with constant treewidth

    Get PDF
    We consider the problem of reachability in pushdown graphs. We study the problem for pushdown graphs with constant treewidth. Even for pushdown graphs with treewidth 1, for the reachability problem we establish the following: (i) the problem is PTIME-complete, and (ii) any subcubic algorithm for the problem would contradict the k-clique conjecture and imply faster combinatorial algorithms for cliques in graphs

    On some cost allocation problems in communication networks

    Get PDF
    New technologies prompted an explosion in the development of communication networks. Modern network optimization techniques usually lead to a design of the most profitable, or the least cost network that will provide some service to customers. There are various costs and gains associated with building and using a communication network. Moreover, the involved multiple network users and/or owners possibly have conflicting objectives. However, they might cooperate in order to decrease their joint cost or increase their joint profit. Clearly, these individuals or organizations will support a globally \u27attractive\u27 solution(s) only if their expectations for a \u27fair share\u27 of the cost or profit are met. Consequently, providing network developers, users and owners with efficiently computable \u27fair\u27 cost allocation solution procedures is of great importance for strategic management. This work is an overview of some recent results (some already published as well as some new) in the development of cooperative game theory based mechanisms to efficiently compute \u27attractive\u27 cost allocation solutions for several important classes of communication networks

    Computability of simple games: A characterization and application to the core

    Get PDF
    The class of algorithmically computable simple games (i) includes the class of games that have finite carriers and (ii) is included in the class of games that have finite winning coalitions. This paper characterizes computable games, strengthens the earlier result that computable games violate anonymity, and gives examples showing that the above inclusions are strict. It also extends Nakamura's theorem about the nonemptyness of the core and shows that computable games have a finite Nakamura number, implying that the number of alternatives that the players can deal with rationally is restricted.Comment: 35 pages; To appear in Journal of Mathematical Economics; Appendix added, Propositions, Remarks, etc. are renumbere

    A Common Protocol for Agent-Based Social Simulation

    Get PDF
    Traditional (i.e. analytical) modelling practices in the social sciences rely on a very well established, although implicit, methodological protocol, both with respect to the way models are presented and to the kinds of analysis that are performed. Unfortunately, computer-simulated models often lack such a reference to an accepted methodological standard. This is one of the main reasons for the scepticism among mainstream social scientists that results in low acceptance of papers with agent-based methodology in the top journals. We identify some methodological pitfalls that, according to us, are common in papers employing agent-based simulations, and propose appropriate solutions. We discuss each issue with reference to a general characterization of dynamic micro models, which encompasses both analytical and simulation models. In the way, we also clarify some confusing terminology. We then propose a three-stage process that could lead to the establishment of methodological standards in social and economic simulations.Agent-Based, Simulations, Methodology, Calibration, Validation, Sensitivity Analysis

    SciTech News Volume 71, No. 2 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division 9 Aerospace Section of the Engineering Division 12 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 14 Reviews Sci-Tech Book News Reviews 16 Advertisements IEEE
    • …
    corecore