5,885 research outputs found

    Computational and Energy Costs of Cryptographic Algorithms on Handheld Devices

    Get PDF
    Networks are evolving toward a ubiquitous model in which heterogeneous devices are interconnected. Cryptographic algorithms are required for developing security solutions that protect network activity. However, the computational and energy limitations of network devices jeopardize the actual implementation of such mechanisms. In this paper, we perform a wide analysis on the expenses of launching symmetric and asymmetric cryptographic algorithms, hash chain functions, elliptic curves cryptography and pairing based cryptography on personal agendas, and compare them with the costs of basic operating system functions. Results show that although cryptographic power costs are high and such operations shall be restricted in time, they are not the main limiting factor of the autonomy of a device

    Securing Internet of Things with Lightweight IPsec

    Get PDF
    Real-world deployments of wireless sensor networks (WSNs) require secure communication. It is important that a receiver is able to verify that sensor data was generated by trusted nodes. In some cases it may also be necessary to encrypt sensor data in transit. Recently, WSNs and traditional IP networks are more tightly integrated using IPv6 and 6LoWPAN. Available IPv6 protocol stacks can use IPsec to secure data exchange. Thus, it is desirable to extend 6LoWPAN such that IPsec communication with IPv6 nodes is possible. It is beneficial to use IPsec because the existing end-points on the Internet do not need to be modified to communicate securely with the WSN. Moreover, using IPsec, true end-to-end security is implemented and the need for a trustworthy gateway is removed. In this paper we provide End-to-End (E2E) secure communication between an IP enabled sensor nodes and a device on traditional Internet. This is the first compressed lightweight design, implementation, and evaluation of 6LoWPAN extension for IPsec on Contiki. Our extension supports both IPsec's Authentication Header (AH) and Encapsulation Security Payload (ESP). Thus, communication endpoints are able to authenticate, encrypt and check the integrity of messages using standardized and established IPv6 mechanisms

    Dynamic Selection of Symmetric Key Cryptographic Algorithms for Securing Data Based on Various Parameters

    Full text link
    Most of the information is in the form of electronic data. A lot of electronic data exchanged takes place through computer applications. Therefore information exchange through these applications needs to be secure. Different cryptographic algorithms are usually used to address these security concerns. However, along with security there are other factors that need to be considered for practical implementation of different cryptographic algorithms like implementation cost and performance. This paper provides comparative analysis of time taken for encryption by seven symmetric key cryptographic algorithms (AES, DES, Triple DES, RC2, Skipjack, Blowfish and RC4) with variation of parameters like different data types, data density, data size and key sizes.Comment: 8 pages, 4 figures, Fifth International Conference on Communications Security & Information Assurance (CSIA 2014) May 24~25, 2014, Delhi, Indi

    Compiling symbolic attacks to protocol implementation tests

    Full text link
    Recently efficient model-checking tools have been developed to find flaws in security protocols specifications. These flaws can be interpreted as potential attacks scenarios but the feasability of these scenarios need to be confirmed at the implementation level. However, bridging the gap between an abstract attack scenario derived from a specification and a penetration test on real implementations of a protocol is still an open issue. This work investigates an architecture for automatically generating abstract attacks and converting them to concrete tests on protocol implementations. In particular we aim to improve previously proposed blackbox testing methods in order to discover automatically new attacks and vulnerabilities. As a proof of concept we have experimented our proposed architecture to detect a renegotiation vulnerability on some implementations of SSL/TLS, a protocol widely used for securing electronic transactions.Comment: In Proceedings SCSS 2012, arXiv:1307.802

    Privacy-Preserving Shortest Path Computation

    Full text link
    Navigation is one of the most popular cloud computing services. But in virtually all cloud-based navigation systems, the client must reveal her location and destination to the cloud service provider in order to learn the fastest route. In this work, we present a cryptographic protocol for navigation on city streets that provides privacy for both the client's location and the service provider's routing data. Our key ingredient is a novel method for compressing the next-hop routing matrices in networks such as city street maps. Applying our compression method to the map of Los Angeles, for example, we achieve over tenfold reduction in the representation size. In conjunction with other cryptographic techniques, this compressed representation results in an efficient protocol suitable for fully-private real-time navigation on city streets. We demonstrate the practicality of our protocol by benchmarking it on real street map data for major cities such as San Francisco and Washington, D.C.Comment: Extended version of NDSS 2016 pape
    corecore