6,303 research outputs found

    Design of AMBA AXI4 protocol for System-on-Chip communication

    Get PDF
    Advanced microcontroller bus architecture (AMBA) protocol family provides metric-driven verification of protocol compliance, enabling comprehensive testing of interface intellectual property (IP) blocks and system-on-chip (SoC) designs. The AMBA advanced extensible interface 4 (AXI4) update to AMBA AXI3 includes the following: support for burst lengths up to 256 beats, updated write response requirements, removal of locked transactions and AXI4 also includes information on the interoperability of components. AMBA AXI4 protocol system supports 16 masters and 16 slaves interfacing. This paper presents a work aimed to design the AMBA AXI4 protocol modeled in Verilog hardware description language (HDL) and simulation results for read and write operation of data and address are shown in Verilog compiler simulator (VCS) tool. The operating frequency is set to 100MHz. Two test cases are run to perform multiple read and multiple write operations. To perform single read operation module takes 160ns and for single write operation it takes 565ns

    Automating the IEEE std. 1500 compliance verification for embedded cores

    Get PDF
    The IEEE 1500 standard for embedded core testing proposes a very effective solution for testing modern system-on-chip (SoC). It proposes a flexible hardware test wrapper architecture, together with a core test language (CTL) used to describe the implemented wrapper functionalities. Already several IP providers have announced compliance in both existing and future design blocks. In this paper we address the challenge of guaranteeing the compliance of a wrapper architecture and its CTL description to the IEEE std. 1500. This is a mandatory step to fully trust the wrapper functionalities in applying the test sequences to the core. The proposed solution aims at implementing a verification framework allowing core providers and/or integrators to automatically verify the compliancy of their products (sold or purchased) to the standar

    Performance Considerations for an Embedded Implementation of OMA DRM 2

    Full text link
    As digital content services gain importance in the mobile world, Digital Rights Management (DRM) applications will become a key component of mobile terminals. This paper examines the effect dedicated hardware macros for specific cryptographic functions have on the performance of a mobile terminal that supports version 2 of the open standard for Digital Rights Management defined by the Open Mobile Alliance (OMA). Following a general description of the standard, the paper contains a detailed analysis of the cryptographic operations that have to be carried out before protected content can be accessed. The combination of this analysis with data on execution times for specific algorithms realized in hardware and software has made it possible to build a model which has allowed us to assert that hardware acceleration for specific cryptographic algorithms can significantly reduce the impact DRM has on a mobile terminal's processing performance and battery life.Comment: Submitted on behalf of EDAA (http://www.edaa.com/

    On Making Emerging Trusted Execution Environments Accessible to Developers

    Full text link
    New types of Trusted Execution Environment (TEE) architectures like TrustLite and Intel Software Guard Extensions (SGX) are emerging. They bring new features that can lead to innovative security and privacy solutions. But each new TEE environment comes with its own set of interfaces and programming paradigms, thus raising the barrier for entry for developers who want to make use of these TEEs. In this paper, we motivate the need for realizing standard TEE interfaces on such emerging TEE architectures and show that this exercise is not straightforward. We report on our on-going work in mapping GlobalPlatform standard interfaces to TrustLite and SGX.Comment: Author's version of article to appear in 8th Internation Conference of Trust & Trustworthy Computing, TRUST 2015, Heraklion, Crete, Greece, August 24-26, 201

    Master of Science

    Get PDF
    thesisThis thesis designs, implements, and evaluates modular Open Core Protocol (OCP) interfaces for Intellectual Property (IP) cores and Network-on-Chip (NoC) that re- duces System-On-Chip (SoC) design time and enables research on di erent architectural sequencing control methods. To utilize the NoCs design time optimization feature at the boundaries, a standardized industry socket was required, which can address the SoC shorter time-to-market requirements, design issues, and also the subsequent reuse of developed IP cores. OCP is an open industry standard socket interface speci cation used in this research to enable the IP cores reusability across multiple SoC designs. This research work designs and implements clocked OCP interfaces between IP cores and On-Chip Network Fabric (NoC), in single- and multi- frequency clocked domains. The NoC interfaces between IP cores and on-chip network fabric are implemented using the standard network interface structure. It consists of back-end and front-end submodules corresponding to customized interfaces to IP cores or network fabric and OCP Master and Slave entities, respectively. A generic domain interface (DI) protocol is designed which acts as the bridge between back-end and front-end submodules for synchronization and data ow control. Clocked OCP interfaces are synthesized, placed and routed using IBM's 65nm process technology. The implemented designs are veri ed for OCP compliance using SOLV (Sonics OCP Library for Veri cation). Finally, this thesis reports the performance metrics such as design target frequency of operation, latency, area, energy per transaction, and maximum bandwidth across network on-chip for single- and multifrequency clocked designs

    SoC Test: Trends and Recent Standards

    Get PDF
    The well-known approaching test cost crisis, where semiconductor test costs begin to approach or exceed manufacturing costs has led test engineers to apply new solutions to the problem of testing System-On-Chip (SoC) designs containing multiple IP (Intellectual Property) cores. While it is not yet possible to apply generic test architectures to an IP core within a SoC, the emergence of a number of similar approaches, and the release of new industry standards, such as IEEE 1500 and IEEE 1450.6, may begin to change this situation. This paper looks at these standards and at some techniques currently used by SoC test engineers. An extensive reference list is included, reflecting the purpose of this publication as a review paper
    corecore