15,733 research outputs found

    Spatial Noise-Field Control With Online Secondary Path Modeling: A Wave-Domain Approach

    Get PDF
    Due to strong interchannel interference in multichannel active noise control (ANC), there are fundamental problems associated with the filter adaptation and online secondary path modeling remains a major challenge. This paper proposes a wave-domain adaptation algorithm for multichannel ANC with online secondary path modelling to cancel tonal noise over an extended region of two-dimensional plane in a reverberant room. The design is based on exploiting the diagonal-dominance property of the secondary path in the wave domain. The proposed wave-domain secondary path model is applicable to both concentric and nonconcentric circular loudspeakers and microphone array placement, and is also robust against array positioning errors. Normalized least mean squares-type algorithms are adopted for adaptive feedback control. Computational complexity is analyzed and compared with the conventional time-domain and frequency-domain multichannel ANCs. Through simulation-based verification in comparison with existing methods, the proposed algorithm demonstrates more efficient adaptation with low-level auxiliary noise.DP14010341

    ANCシステムにおけるオンライン2次経路とフィードバック経路モデリングのための補助ノイズ電力スケジューリングに関する研究

    Get PDF
    The idea of cancelling the acoustic noise by generating an anti-noise signal is very fascinating, and was first proposed by P. Lueg in 1936. In feedforward active noise control (ANC) systems, the anti-noise signal is generated with the help of reference and error microphones, an adaptive filtered-x-LMS (FxLMS) algorithm based ANC filter, and an electro-acoustic path named as the secondary path. For stable operation of ANC systems, the FxLMS algorithm needs an estimate of the secondary path. The anti-noise signal generated by the loudspeaker (part of secondary path) causes interference with the reference microphone signal. This interference is due to the presence of electro-acoustic path, named as feedback path, between the loudspeaker and the reference microphone. It is required to neutralize the effect of this feedback path, and hence an estimate of the feedback path is required. For online modeling of the secondary and feedback paths, an additional auxiliary noise is injected. This auxiliary noise contributes to the residual error, and thus degrades the noise-reduction-performance (NRP) of ANC system. In order to improve the NRP, a gain scheduling strategy is used to vary the variance of the injected auxiliary noise. The purpose of the gain scheduling is that when the model estimates of the secondary and the feedback paths are far from the actual unknown paths, auxiliary noise with large variance is injected. Once the model estimates are closer to the actual unknown paths, the variance of auxiliary noise is reduced to a small value. In this way, on one hand the gain scheduling can help us to achieve the required model estimates of secondary and feedback paths, and on the other hand to improve the NRP at the steady-state. In this thesis, we discuss the two most important issues, i.e., 1) online secondary path modeling (OSPM), and 2) online feedback path modeling and neutralization (FBPMN) with gain scheduling. In chapter 1, the basic underlying physical principle and configurations of active noise control (ANC) systems are explained. The application of the basic building block of an ANC system i.e. An adaptive filter, in different system identification scenarios is discussed. The most popular adaptive algorithm for ANC system, i.e., FxLMS algorithm is derived for the general secondary path. A brief overview is given for the two fundamental issues in ANC systems, i.e., 1) OSPM and 2) online FBPMN. The use of optimal excitation signal, i.e., Perfect sweep signals for system identification is described. In chapter 2, the existing methods for OSPM without gain scheduling, where the auxiliary noise with fixed variance is used in all operating conditions, are discussed. In this chapter a simplified structure for OSPM with the modified FxLMS (MFxLMS) adaptive algorithm is proposed. The advantage of the simplified structure is that it reduces the computational complexity of the MFxLMS algorithm based OSPM without having any compromise on the performance of ANC system. In chapter 3, the existing methods for OSPM with gain scheduling are discussed. The drawbacks with the existing gain scheduling strategies are highlighted, and some new gain scheduling strategies are proposed to improve the modeling accuracy of SPM filter and the NRP of an ANC system. In existing methods, the gain is varied based on the power of residual error signal which carries information only about the convergence status of ANC system. In the Proposed methods the gain is varied based on the power of error signal of SPM filter. This is more desirable way of controlling the gain because the power of error signal of SPM filter carries information about the convergence status of both the ANC system and the SPM filter. The performance comparison is carried out through the simulation results. In chapter 4, the second most important issue associated with the feedforward configuration of ANC system, i.e., the issue of online FBPMN is deal with. In the first part, the existing methods for online FBPMN without gain scheduling are discussed. A new structure is proposed for online FBPMN without gain scheduling. The performance of the existing methods is compare with the proposed method through the simulation results. In the new structure the good features from the existing structures are combined together. The predictor is used in the new structure to remove the predictable interference term from the error signal of adaptive FBPMN filter. In addition to this, the action of FBPM filter and the FBPN filter is combined into a single FBPMN filter. The advantage of the new structure over the existing structures is that it can better neutralize the effect of feedback coupling on the input signal of ANC filter, thus improves the convergence of ANC system. In the second part, a gain scheduling strategy is proposed to improve the NRP of ANC system. In addition to this, a self-tuned ANP scheduling strategy with matching step-size for FBPMN filter is also proposed that requires no tuning parameters and further improves the NRP of ANC systems. In chapter 5, the concluding remarks and some future research directions are given.電気通信大学201

    On the Deployment of Cognitive Relay as Underlay Systems

    Full text link
    The objective of this paper is to extend the idea of Cognitive Relay (CR). CR, as a secondary user, follows an underlay paradigm to endorse secondary usage of the spectrum to the indoor devices. To seek a spatial opportunity, i.e., deciding its transmission over the primary user channels, CR models its deployment scenario and the movements of the primary receivers and indoor devices. Modeling is beneficial for theoretical analysis, however it is also important to ensure the performance of CR in a real scenario. We consider briefly, the challenges involved while deploying a hardware prototype of such a system.Comment: 6 pages, 7 figures, 4 tables, accepted in Proceedings of CrownCom 2014, Oulu (Finland), June 2-4, 201

    Performance analysis and design of FxLMS algorithm in broadband ANC system with online secondary-path modeling

    Get PDF
    The filtered-x LMS (FxLMS) algorithm has been widely used in active noise control (ANC) systems, where the secondary path is usually estimated online by injecting auxiliary noises. In such an ANC system, the ANC controller and the secondary-path estimator are coupled with each other, which make it difficult to analyze the performance of the entire system. Therefore, a comprehensive performance analysis of broadband ANC systems is not available currently to our best knowledge. In this paper, the convergence behavior of the FxLMS algorithm in broadband ANC systems with online secondary-path modeling is studied. Difference equations which describe the mean and mean square convergence behaviors of the adaptive algorithms are derived. Using these difference equations, the stability of the system is analyzed. Finally, the coupled equations at the steady state are solved to obtain the steady-state excess mean square errors (EMSEs) for the ANC controller and the secondary-path estimator. Computer simulations are conducted to verify the agreement between the simulated and theoretically predicted results. Moreover, using the proposed theoretical analysis, a systematic and simple design procedure for ANC systems is proposed. The usefulness of the theoretical results and design procedure is demonstrated by means of a design example. © 2012 IEEE.published_or_final_versio

    An Efficient & Less Complex Solution to Mitigate Impulsive Noise in Multi-Channel Feed-Forward ANC System with Online Secondary Path Modeling (OSPM)

    Get PDF
    This paper deals with impulsive noise (IN) in multichannel (MC) Active Noise Control (ANC) Systems with Online Secondary Path Modelling (OSPM) employing adaptive algorithms for the first time. It compares performance of various existing techniques belonging to varied computational complexity range and proposes four new methods, namely: FxRLS-VSSLMS, VSSLMS-VSSLMS, FxLMAT-VSSLMS and NSS MFxLMAT-VSSLMS to deal with modest to very high impulsive noise (IN). Simulation results show that these proposed methods demonstrated improved performance in terms of fast convergence speed, lowest steady state error, robustness and stability under impulsive environment in addition to modelling accuracy for stationary as well as non-stationary environment besides reducing computational complexity many folds

    Ab initio computations of molecular systems by the auxiliary-field quantum Monte Carlo method

    Full text link
    The auxiliary-field quantum Monte Carlo (AFQMC) method provides a computational framework for solving the time-independent Schroedinger equation in atoms, molecules, solids, and a variety of model systems. AFQMC has recently witnessed remarkable growth, especially as a tool for electronic structure computations in real materials. The method has demonstrated excellent accuracy across a variety of correlated electron systems. Taking the form of stochastic evolution in a manifold of non-orthogonal Slater determinants, the method resembles an ensemble of density-functional theory (DFT) calculations in the presence of fluctuating external potentials. Its computational cost scales as a low-power of system size, similar to the corresponding independent-electron calculations. Highly efficient and intrinsically parallel, AFQMC is able to take full advantage of contemporary high-performance computing platforms and numerical libraries. In this review, we provide a self-contained introduction to the exact and constrained variants of AFQMC, with emphasis on its applications to the electronic structure in molecular systems. Representative results are presented, and theoretical foundations and implementation details of the method are discussed.Comment: 22 pages, 11 figure
    corecore