129 research outputs found

    Probabilistic Operational Semantics for the Lambda Calculus

    Full text link
    Probabilistic operational semantics for a nondeterministic extension of pure lambda calculus is studied. In this semantics, a term evaluates to a (finite or infinite) distribution of values. Small-step and big-step semantics are both inductively and coinductively defined. Moreover, small-step and big-step semantics are shown to produce identical outcomes, both in call-by- value and in call-by-name. Plotkin's CPS translation is extended to accommodate the choice operator and shown correct with respect to the operational semantics. Finally, the expressive power of the obtained system is studied: the calculus is shown to be sound and complete with respect to computable probability distributions.Comment: 35 page

    Metric Reasoning About λ-Terms: The Affine Case

    Get PDF
    International audienceTerms of Church's λ-calculus can be considered equivalent along many different definitions, but context equivalence is certainly the most direct and universally accepted one. If the underlying calculus becomes probabilistic, however, equivalence is too discriminating: terms which have totally unrelated behaviours are treated the same as terms which behave very similarly. We study the problem of evaluating the distance between affine λ-terms. A natural generalisation of context equivalence , is shown to be characterised by a notion of trace distance, and to be bounded from above by a coinductively defined distance based on the Kantorovich metric on distributions. A different, again fully-abstract, tuple-based notion of trace distance is shown to be able to handle nontrivial examples

    Resource Transition Systems and Full Abstraction for Linear Higher-Order Effectful Programs

    Get PDF
    International audienceWe investigate program equivalence for linear higher-order (sequential) languages endowed with primitives for computational effects. More specifically, we study operationally-based notions of program equivalence for a linear λ-calculus with explicit copying and algebraic effects à la Plotkin and Power. Such a calculus makes explicit the interaction between copying and linearity, which are intensional aspects of computation, with effects, which are, instead, extensional. We review some of the notions of equivalences for linear calculi proposed in the literature and show their limitations when applied to effectful calculi where copying is a first-class citizen. We then introduce resource transition systems, namely transition systems whose states are built over tuples of programs representing the available resources, as an operational semantics accounting for both intensional and extensional interactive behaviours of programs. Our main result is a sound and complete characterization of contextual equivalence as trace equivalence defined on top of resource transition systems

    On coinduction and quantum lambda calculi

    Get PDF
    © Yuxin Deng, Yuan Feng, and Ugo Dal Lago; licensed under Creative Commons License CC-BY. In the ubiquitous presence of linear resources in quantum computation, program equivalence in linear contexts, where programs are used or executed once, is more important than in the classical setting. We introduce a linear contextual equivalence and two notions of bisimilarity, a state-based and a distribution-based, as proof techniques for reasoning about higher-order quantum programs. Both notions of bisimilarity are sound with respect to the linear contextual equivalence, but only the distribution-based one turns out to be complete. The completeness proof relies on a characterisation of the bisimilarity as a testing equivalence
    • …
    corecore