2,020 research outputs found

    Frequency-domain transmit processing for MIMO SC-FDMA in wideband propagation channels

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Memoryless Relay Strategies for Two-Way Relay Channels: Performance Analysis and Optimization

    Get PDF
    We consider relaying strategies for two-way relay channels, where two terminals transmits simultaneously to each other with the help of relays. A memoryless system is considered, where the signal transmitted by a relay depends only on its last received signal. For binary antipodal signaling, we analyze and optimize the performance of existing amplify and forward (AF) and absolute (abs) decode and forward (ADF) for two- way AWGN relay channels. A new abs-based AF (AAF) scheme is proposed, which has better performance than AF. In low SNR, AAF performs even better than ADF. Furthermore, a novel estimate and forward (EF) strategy is proposed which performs better than ADF. More importantly, we optimize the relay strategy within the class of abs-based strategies via functional analysis, which minimizes the average probability of error over all possible relay functions. The optimized function is shown to be a Lambert's W function parameterized on the noise power and the transmission energy. The optimized function behaves like AAF in low SNR and like ADF in high SNR, resp., where EF behaves like the optimized function over the whole SNR range

    On the performance of 1-level LDPC lattices

    Full text link
    The low-density parity-check (LDPC) lattices perform very well in high dimensions under generalized min-sum iterative decoding algorithm. In this work we focus on 1-level LDPC lattices. We show that these lattices are the same as lattices constructed based on Construction A and low-density lattice-code (LDLC) lattices. In spite of having slightly lower coding gain, 1-level regular LDPC lattices have remarkable performances. The lower complexity nature of the decoding algorithm for these type of lattices allows us to run it for higher dimensions easily. Our simulation results show that a 1-level LDPC lattice of size 10000 can work as close as 1.1 dB at normalized error probability (NEP) of 10510^{-5}.This can also be reported as 0.6 dB at symbol error rate (SER) of 10510^{-5} with sum-product algorithm.Comment: 1 figure, submitted to IWCIT 201

    Scanning and Sequential Decision Making for Multidimensional Data -- Part II: The Noisy Case

    Get PDF
    We consider the problem of sequential decision making for random fields corrupted by noise. In this scenario, the decision maker observes a noisy version of the data, yet judged with respect to the clean data. In particular, we first consider the problem of scanning and sequentially filtering noisy random fields. In this case, the sequential filter is given the freedom to choose the path over which it traverses the random field (e.g., noisy image or video sequence), thus it is natural to ask what is the best achievable performance and how sensitive this performance is to the choice of the scan. We formally define the problem of scanning and filtering, derive a bound on the best achievable performance, and quantify the excess loss occurring when nonoptimal scanners are used, compared to optimal scanning and filtering. We then discuss the problem of scanning and prediction for noisy random fields. This setting is a natural model for applications such as restoration and coding of noisy images. We formally define the problem of scanning and prediction of a noisy multidimensional array and relate the optimal performance to the clean scandictability defined by Merhav and Weissman. Moreover, bounds on the excess loss due to suboptimal scans are derived, and a universal prediction algorithm is suggested. This paper is the second part of a two-part paper. The first paper dealt with scanning and sequential decision making on noiseless data arrays

    Coding theorems for turbo code ensembles

    Get PDF
    This paper is devoted to a Shannon-theoretic study of turbo codes. We prove that ensembles of parallel and serial turbo codes are "good" in the following sense. For a turbo code ensemble defined by a fixed set of component codes (subject only to mild necessary restrictions), there exists a positive number γ0 such that for any binary-input memoryless channel whose Bhattacharyya noise parameter is less than γ0, the average maximum-likelihood (ML) decoder block error probability approaches zero, at least as fast as n -β, where β is the "interleaver gain" exponent defined by Benedetto et al. in 1996

    Optimal Worst-Case QoS Routing in Constrained AWGN Channel Network

    Get PDF
    In this paper, we extend the optimal worst-case QoS routing algorithm and metric definition given in [1]. We prove that in addition to the q-ary symmetric and q-ary erasure channel model, the necessary and sufficient conditions defined in [2] for the Generalized Dijkstra's Algorithm (GDA) can be used with a constrained non-negative-mean AWGN channel. The generalization allowed the computation of the worst-case QoS metric value for a given edge weight density. The worst-case value can then be used as the routing metric in networks where some nodes have error correcting capabilities. The result is an optimal worst-case QoS routing algorithm that uses the Generalized Dijkstra's Algorithm as a subroutine with a polynomial time complexity of O(V^3)
    corecore