8 research outputs found

    Distributive Lattices, Polyhedra, and Generalized Flow

    Full text link
    A D-polyhedron is a polyhedron PP such that if x,yx,y are in PP then so are their componentwise max and min. In other words, the point set of a D-polyhedron forms a distributive lattice with the dominance order. We provide a full characterization of the bounding hyperplanes of D-polyhedra. Aside from being a nice combination of geometric and order theoretic concepts, D-polyhedra are a unifying generalization of several distributive lattices which arise from graphs. In fact every D-polyhedron corresponds to a directed graph with arc-parameters, such that every point in the polyhedron corresponds to a vertex potential on the graph. Alternatively, an edge-based description of the point set can be given. The objects in this model are dual to generalized flows, i.e., dual to flows with gains and losses. These models can be specialized to yield some cases of distributive lattices that have been studied previously. Particular specializations are: lattices of flows of planar digraphs (Khuller, Naor and Klein), of α\alpha-orientations of planar graphs (Felsner), of c-orientations (Propp) and of Δ\Delta-bonds of digraphs (Felsner and Knauer). As an additional application we exhibit a distributive lattice structure on generalized flow of breakeven planar digraphs.Comment: 17 pages, 3 figure

    On Matroid and Polymatroid Connectivity

    Get PDF
    Matroids were introduced in 1935 by Hassler Whitney to provide a way to abstractly capture the dependence properties common to graphs and matrices. One important class of matroids arises by taking as objects some finite collection of one-dimensional subspaces of a vector space. If, instead, one takes as objects some finite collection of subspaces of dimensions at most k in a vector space, one gets an example of a k-polymatroid. Connectivity is a pivotal topic of study in the endeavor to understand the structure of matroids and polymatroids. In this dissertation, we study the notion of connectivity from several angles. It is a well-known result of Tutte that, for every element x of a connected matroid M, at least one of the deletion and contraction of x from M is connected. Our first result shows that, in a connected k-polymatroid, only two such elements are guaranteed. We show that this bound is sharp and characterize those 2-polymatroids that achieve this minimum. It is well known that, for any integer n greater than one, there is a number r such that every 2-connected simple graph with at least r edges has a minor isomorphic to an n-edge cycle or K2,n. This result was extended to matroids by Lovász, Schrijver, and Seymour who proved that every sufficiently large connected matroid has an n-element circuit or an n-element cocircuit as a minor. As our second result, we generalize these theorems by providing an analogous result for connected 2-polymatroids. Significant progress on the corresponding problem for k-polymatroids is also described. Finally, we look at tangles, a tool that has been used extensively in recent results in matroid structure theory. We prove that a matroid with at least two elements is a tangle matroid if and only if it cannot be covered by three hyperplanes. Some consequences of this theorem are also noted. In particular, no binary matroid of rank at least two is a tangle matroid

    Structural and decomposition results for binet matrices, bidirected graphs and signed-graphic matroids.

    Get PDF
    In this thesis we deal with binet matrices and the class of signed-graphic matroids which is the class of matroids represented over R by binet matrices. The thesis is divided in three parts. In the first part, we provide the vast majority of the notions used throughout the thesis and some results regarding the class of binet matrices. In this part, we focus on the class of linear and integer programming problems in which the constraint matrix is binet and provide methods and algorithms which solve these problems efficiently. The main new result is that the existing combinatorial methods can not solve the {lcub}0, 1/2{rcub}-separation problem (special case of the well known separation problem) with integral binet matrices. The main new results of the whole thesis are provided in the next two parts. In the second part, we present a polynomial time algorithm to construct a bidirected graph for any totally unimodular matrix B by finding node-edge incidence matrices Q and S such that QB = S. Seymour's famous decomposition theorem for regular matroids states that any totally unimodular matrix can be constructed through a series of composition operations called k-sums starting from network matrices and their transposes and two compact representation matrices B1 and B2 of a certain ten element matroid. Given that B1 and B2 are binet matrices, we examine the k-sums of network and binet matrices (k = 1,2, 3). It is shown that the k-sum of a network and a binet matrix is a binet matrix, but binet matrices are not closed under this operation for k = 2, 3. A new class of matrices is introduced, the so-called tour matrices, which generalises network and totally unimodular matrices. For any such matrix there exists a bidirected graph such that the columns represent a collection of closed tours in the graph. It is shown that tour matrices are closed under 1-, 2- and 3-sum as well as under elementary operations on their rows and columns. Given the constructive proofs of the above results regarding the k-sum operations and existing recognition algorithms for network and binet matrices, an algorithm is presented which constructs a bidirected graph for any totally unimodular matrix. In the third part of this thesis we deal with the frame matroid of a signed graph, or simply the signed-graphic matroid. Several new results are provided in this last part of the thesis. Specifically, given a signed graph, we provide methods to find representation matrices of the associated signed-graphic matroid over GF(2), GF(3) and R. Furthermore, two new matroid recognition algorithms are presented in this last part. The first one determines whether a binary matroid is signed-graphic or not and the second one determines whether a (general) matroid is binary signed-graphic or not. Finally, one of the most important new results of this thesis is the decomposition theory for the class of binary signed-graphic matroids which is provided in the last chapter. In order to achieve this result, we employed Tutte's theory of bridges. The proposed decomposition differs from previous decomposition results on matroids that have appeared in the literature in the sense that it is not based on k-sums, but rather on the operation of deletion of a cocircuit. Specifically, it is shown that certain minors resulting from the deletion of a cocircuit of a binary matroid will be graphic matroids except for one that will be signed-graphic if and only if the matroid is signed-graphic. The decomposition theory for binary signed-graphic matroids is a joint work with G. Appa and L. Pitsoulis

    Exponentially Dense Matroids

    Get PDF
    This thesis deals with questions relating to the maximum density of rank-n matroids in a minor-closed class. Consider a minor-closed class M of matroids that does not contain a given rank-2 uniform matroid. The growth rate function is defined by h_M(n) = max(|N| : N ∈ M simple, r(N) ≤ n). The Growth Rate Theorem, due to Geelen, Kabell, Kung, and Whittle, shows that the growth rate function is either linear, quadratic, or exponential in n. In the case of exponentially dense classes, we conjecture that, for sufficiently large n, h_M(n) = (q^(n+k) − 1)/(q-1) − c, where q is a prime power, and k and c are non-negative integers depending only on M. We show that this holds for several interesting classes, including the class of all matroids with no U_{2,t}-minor. We also consider more general minor-closed classes that exclude an arbitrary uniform matroid. Here the growth rate, as defined above, can be infinite. We define a more suitable notion of density, and prove a growth rate theorem for this more general notion, dividing minor-closed classes into those that are at most polynomially dense, and those that are exponentially dense

    Subject Index Volumes 1–200

    Get PDF

    On cocircuit covers of bicircular matroids

    No full text
    AbstractGiven a graph G, one can define a matroid M=(E,C) on the edges E of G with circuits C where C is either the cycles of G or the bicycles of G. The former is called the cycle matroid of G and the latter the bicircular matroid of G. For each bicircular matroid B(G), we find a cocircuit cover of size at most the circumference of B(G) that contains every edge at least twice. This extends the result of Neumann-Lara, Rivera-Campo and Urrutia for graphic matroids
    corecore