217 research outputs found

    On closure ordinals for the modal mu-calculus

    Get PDF
    The closure ordinal of a formula of modal mu-calculus mu X phi is the least ordinal kappa, if it exists, such that the denotation of the formula and the kappa-th iteration of the monotone operator induced by phi coincide across all transition systems (finite and infinite). It is known that for every alpha < omega^2 there is a formula phi of modal logic such that mu X phi has closure ordinal alpha (Czarnecki 2010). We prove that the closure ordinals arising from the alternation-free fragment of modal mu-calculus (the syntactic class capturing Sigma_2 cap Pi_2) are bounded by omega^2. In this logic satisfaction can be characterised in terms of the existence of tableaux, trees generated by systematically breaking down formulae into their constituents according to the semantics of the calculus. To obtain optimal upper bounds we utilise the connection between closure ordinals of formulae and embedded order-types of the corresponding tableaux

    On closure ordinals for the modal mu-calculus

    Get PDF
    The closure ordinal of a formula of modal mu-calculus mu X phi is the least ordinal kappa, if it exists, such that the denotation of the formula and the kappa-th iteration of the monotone operator induced by phi coincide across all transition systems (finite and infinite). It is known that for every alpha < omega^2 there is a formula phi of modal logic such that mu X phi has closure ordinal alpha (Czarnecki 2010). We prove that the closure ordinals arising from the alternation-free fragment of modal mu-calculus (the syntactic class capturing Sigma_2 cap Pi_2) are bounded by omega^2. In this logic satisfaction can be characterised in terms of the existence of tableaux, trees generated by systematically breaking down formulae into their constituents according to the semantics of the calculus. To obtain optimal upper bounds we utilise the connection between closure ordinals of formulae and embedded order-types of the corresponding tableaux

    Succinctness in subsystems of the spatial mu-calculus

    Full text link
    In this paper we systematically explore questions of succinctness in modal logics employed in spatial reasoning. We show that the closure operator, despite being less expressive, is exponentially more succinct than the limit-point operator, and that the μ\mu-calculus is exponentially more succinct than the equally-expressive tangled limit operator. These results hold for any class of spaces containing at least one crowded metric space or containing all spaces based on ordinals below ωω\omega^\omega, with the usual limit operator. We also show that these results continue to hold even if we enrich the less succinct language with the universal modality

    Fixed-point elimination in the intuitionistic propositional calculus

    Full text link
    It is a consequence of existing literature that least and greatest fixed-points of monotone polynomials on Heyting algebras-that is, the algebraic models of the Intuitionistic Propositional Calculus-always exist, even when these algebras are not complete as lattices. The reason is that these extremal fixed-points are definable by formulas of the IPC. Consequently, the ÎĽ\mu-calculus based on intuitionistic logic is trivial, every ÎĽ\mu-formula being equivalent to a fixed-point free formula. We give in this paper an axiomatization of least and greatest fixed-points of formulas, and an algorithm to compute a fixed-point free formula equivalent to a given ÎĽ\mu-formula. The axiomatization of the greatest fixed-point is simple. The axiomatization of the least fixed-point is more complex, in particular every monotone formula converges to its least fixed-point by Kleene's iteration in a finite number of steps, but there is no uniform upper bound on the number of iterations. We extract, out of the algorithm, upper bounds for such n, depending on the size of the formula. For some formulas, we show that these upper bounds are polynomial and optimal

    Canonical completeness of infinitary mu

    Get PDF
    AbstractThis paper presents a new model construction for a natural cut-free infinitary version Kω+(μ) of the propositional modal μ-calculus. Based on that the completeness of Kω+(μ) and the related system Kω(μ) can be established directly – no detour, for example through automata theory, is needed. As a side result we also obtain a finite, cut-free sound and complete system for the propositional modal μ-calculus

    Fixpoint Games on Continuous Lattices

    Get PDF
    Many analysis and verifications tasks, such as static program analyses and model-checking for temporal logics reduce to the solution of systems of equations over suitable lattices. Inspired by recent work on lattice-theoretic progress measures, we develop a game-theoretical approach to the solution of systems of monotone equations over lattices, where for each single equation either the least or greatest solution is taken. A simple parity game, referred to as fixpoint game, is defined that provides a correct and complete characterisation of the solution of equation systems over continuous lattices, a quite general class of lattices widely used in semantics. For powerset lattices the fixpoint game is intimately connected with classical parity games for ÎĽ\mu-calculus model-checking, whose solution can exploit as a key tool Jurdzi\'nski's small progress measures. We show how the notion of progress measure can be naturally generalised to fixpoint games over continuous lattices and we prove the existence of small progress measures. Our results lead to a constructive formulation of progress measures as (least) fixpoints. We refine this characterisation by introducing the notion of selection that allows one to constrain the plays in the parity game, enabling an effective (and possibly efficient) solution of the game, and thus of the associated verification problem. We also propose a logic for specifying the moves of the existential player that can be used to systematically derive simplified equations for efficiently computing progress measures. We discuss potential applications to the model-checking of latticed ÎĽ\mu-calculi and to the solution of fixpoint equations systems over the reals

    A Note on Negative Tagging for Least Fixed-Point Formulae

    Get PDF
    We consider proof systems with sequents of the formU |- F for proving validity of a propositional modal mu-calculus formula F over a set U of states in a given model. Such proof systems usually handle fixed-point formulae through unfolding, thus allowing such formulae to reappear in a proof. Tagging is a technique originated by Winskel for annotating fixed-point formulae with information about the proof states at which these are unfolded. This information is used later in the proof to avoid unnecessary unfolding, without having to investigate the history of the proof. Depending on whether tags are used for acceptance or for rejection of a branch in the proof tree, we refer to ``positive'' or ``negative'' tagging, respectively. In their simplest form, tags consist of the sets U at which fixed-point formulae are unfolded. In this paper, we generalise results of earlier work by Andersen, Stirling and Winskel which, in the case of least fixed-point formulae, are applicable to singleton U sets only

    Positional Determinacy of Games with Infinitely Many Priorities

    Get PDF
    We study two-player games of infinite duration that are played on finite or infinite game graphs. A winning strategy for such a game is positional if it only depends on the current position, and not on the history of the play. A game is positionally determined if, from each position, one of the two players has a positional winning strategy. The theory of such games is well studied for winning conditions that are defined in terms of a mapping that assigns to each position a priority from a finite set. Specifically, in Muller games the winner of a play is determined by the set of those priorities that have been seen infinitely often; an important special case are parity games where the least (or greatest) priority occurring infinitely often determines the winner. It is well-known that parity games are positionally determined whereas Muller games are determined via finite-memory strategies. In this paper, we extend this theory to the case of games with infinitely many priorities. Such games arise in several application areas, for instance in pushdown games with winning conditions depending on stack contents. For parity games there are several generalisations to the case of infinitely many priorities. While max-parity games over omega or min-parity games over larger ordinals than omega require strategies with infinite memory, we can prove that min-parity games with priorities in omega are positionally determined. Indeed, it turns out that the min-parity condition over omega is the only infinitary Muller condition that guarantees positional determinacy on all game graphs

    Finite Convergence of ?-Calculus Fixpoints on Genuinely Infinite Structures

    Get PDF
    • …
    corecore