98 research outputs found

    Domain specific high performance reconfigurable architecture for a communication platform

    Get PDF

    Exploiting generalized de-Bruijn/Kautz topologies for flexible iterative channel code decoder architectures

    Get PDF
    Modern iterative channel code decoder architectures have tight constrains on the throughput but require flexibility to support different modes and standards. Unfortunately, flexibility often comes at the expense of increasing the number of clock cycles required to complete the decoding of a data-frame, thus reducing the sustained throughput. The Network- on-Chip (NoC) paradigm is an interesting option to achieve flexibility, but several design choices, including the topology and the routing algorithm, can affect the decoder throughput. In this work logarithmic diameter topologies, in particular generalized de-Bruijn and Kautz topologies, are addressed as possible solutions to achieve both flexible and high throughput architectures for iterative channel code decoding. In particular, this work shows that the optimal shortest-path routing algorithm for these topologies, that is still available in the open literature, can be efficiently implemented resorting to a very simple circuit. Experimental results show that the proposed architecture features a reduction of about 14% and 10% for area and power consumption respectively, with respect to a previous shortest-path routing-table-based desig

    Exploiting generalized de-Bruijn/Kautz topologies for flexible iterative channel code decoder architectures

    Get PDF
    Modern iterative channel code decoder architectures have tight constrains on the throughput but require flexibility to support different modes and standards. Unfortunately, flexibility often comes at the expense of increasing the number of clock cycles required to complete the decoding of a data-frame, thus reducing the sustained throughput. The Network- on-Chip (NoC) paradigm is an interesting option to achieve flexibility, but several design choices, including the topology and the routing algorithm, can affect the decoder throughput. In this work logarithmic diameter topologies, in particular generalized de-Bruijn and Kautz topologies, are addressed as possible solutions to achieve both flexible and high throughput architectures for iterative channel code decoding. In particular, this work shows that the optimal shortest-path routing algorithm for these topologies, that is still available in the open literature, can be efficiently implemented resorting to a very simple circuit. Experimental results show that the proposed architecture features a reduction of about 14% and 10% for area and power consumption respectively, with respect to a previous shortest-path routing-table-based design

    VLSI implementation of a multi-mode turbo/LDPC decoder architecture

    Get PDF
    Flexible and reconfigurable architectures have gained wide popularity in the communications field. In particular, reconfigurable architectures for the physical layer are an attractive solution not only to switch among different coding modes but also to achieve interoperability. This work concentrates on the design of a reconfigurable architecture for both turbo and LDPC codes decoding. The novel contributions of this paper are: i) tackling the reconfiguration issue introducing a formal and systematic treatment that, to the best of our knowledge, was not previously addressed; ii) proposing a reconfigurable NoCbased turbo/LDPC decoder architecture and showing that wide flexibility can be achieved with a small complexity overhead. Obtained results show that dynamic switching between most of considered communication standards is possible without pausing the decoding activity. Moreover, post-layout results show that tailoring the proposed architecture to the WiMAX standard leads to an area occupation of 2.75 mm2 and a power consumption of 101.5 mW in the worst case

    Improving Network-on-Chip-based Turbo Decoder Architectures

    Get PDF
    In this work novel results concerning Networkon- Chip-based turbo decoder architectures are presented. Stemming from previous publications, this work concentrates first on improving the throughput by exploiting adaptive-bandwidth-reduction techniques. This technique shows in the best case an improvement of more than 60 Mb/s. Moreover, it is known that double-binary turbo decoders require higher area than binary ones. This characteristic has the negative effect of increasing the data width of the network nodes. Thus, the second contribution of this work is to reduce the network complexity to support doublebinary codes, by exploiting bit-level and pseudo-floatingpoint representation of the extrinsic information. These two techniques allow for an area reduction of up to more than the 40 % with a performance degradation of about 0.2 d

    06141 Abstracts Collection -- Dynamically Reconfigurable Architectures

    Get PDF
    From 02.04.06 to 07.04.06, the Dagstuhl Seminar 06141 ``Dynamically Reconfigurable Architectures\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Case Study: First-Time Success ASIC Design Methodology Applied to a Multi-Processor System-on-Chip

    Get PDF
    Achieving first-time success is crucial in the ASIC design league considering the soaring cost, tight time-to-market window, and competitive business environment. One key factor in ensuring first-time success is a well-defined ASIC design methodology. Here we propose a novel ASIC design methodology that has been proven for the RUMPS401 (Rahman University Multi-Processor System 401) Multiprocessor System-on-Chip (MPSoC) project. The MPSoC project is initiated by Universiti Tunku Abdul Rahman (UTAR) VLSI design center. The proposed methodology includes the use of Universal Verification Methodology (UVM). The use of electronic design automation (EDA) software during each step of the design methodology is also presented. The first-time success RUMPS401 demonstrates the use of the proposed ASIC design methodology and the good of using one. Especially this project is carried on in educational environment that is even more limited in budget, resources and know-how, compared to the business and industrial counterparts. Here a novel ASIC design methodology that is tailored to first-time success MPSoC is presented

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool
    corecore