991 research outputs found

    A comparison of digital transmission techniques under multichannel conditions at 2.4 GHz in the ISM BAND

    Get PDF
    In order to meet the observation quality criteria of micro-UAVs, and particularly in the context of the « Trophée Micro-Drones », ISAE/SUPAERO is studying technical solutions to transmit a high data rate from a video payload onboard a micro-UAV. The laboratory has to consider the impact of multipath and shadowing effects on the emitted signal. Therefore fading resistant transmission techniques are considered. This techniques paper have to reveal an optimum trade-off between three parameters, namely: the characteristics of the video stream, the complexity of the modulation and coding scheme, and the efficiency of the transmission, in term of BER

    Downlink channel estimation for IMT-DS

    Get PDF
    IMT-DS system is an approved terrestrial radio interface standard for 3G mobile communication based on direct sequence code division multiple access (DS-CDMA). It employs a RAKE receiver to exploit multipath diversity. This paper discusses a new dimension in DS-CDMA channel estimation i.e., chip-level adaptive channel estimation. The DL channel of an IMT-DS system consists of time-multiplexed pilot and data symbols to facilitate coherent detection. To obtain channel estimates during pilot symbols, we propose a chip level adaptive channel estimation which performs better than the conventional method. For slow fading channels, like a pedestrian channel, zero order interpolation provides satisfactory performance. However, for fast fading channels, a common decision directed algorithm is applied whose performance is limited due to error propagation. The proposed schemes are assessed over the IMT-DS system by performing simulation

    Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Full text link
    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral efficiency. The interference-PSD estimation enables DS-CDMA systems to significantly suppress interference.Comment: To appear, IEEE Transactions on Wireless Communication

    Chip level simulation of the downlink in UTRA-FDD

    Get PDF
    The specifications of UMTS Terrestrial Radio Access (UTRA) for the physical layer of the downlink make use of orthogonal variable spreading factor (OVSF) codes to preserve the orthogonality between downlink channels of different rates and spreading factors. This technique minimises the downlink intra-cell interference. In order to control the inter-cell interference, every base station multiplies the global downlink signal with a cell specific Gold code (scrambling code). Then, while the inter-cell interference may be modelled using the Gaussian hypothesis (that is: replacing the real interference with a Gaussian noise of the same power), the intra-cell interference requires detailed chip level simulations. In this paper we present results of a chip level simulation of the downlink UTRA physical layer. The objective is to evaluate the raw (uncoded) mean bit error rate (BER) of the system in a realistic environment and conditions. Then, by knowing the BER requirements of the different services, one can easily obtain the maximum capacity in terms of simultaneous connections at any combination of bit rates.Peer ReviewedPostprint (published version

    Blind multi-user combining at the base station for asynchronous CDMA systems

    Get PDF
    This paper studies the potential benefits of antenna arrays in cellular CDMA communications and proposes a powerful scheme to undertake the array processing at the base station in CDMA mobile systems. The proposed technique exploits the temporal structure of CDMA signals. The necessary information is extracted directly from the received signals, thus no training signal orPeer ReviewedPostprint (published version

    Diversity in mobile communications for blind detection of block-coded modulations

    Get PDF
    Spatial, temporal, and frequency diversity structures are analyzed to address the blind equalization problem in the presence of time-variant frequency selective channels. The aim of the paper is to present equalization schemes useful in front of fast changing channel responses. The best solution is a deterministic blind criterion that allows direct channel equalization and symbol detection. The main contribution of this paper is to present deterministic blind equalization schemes in CDMA systems (frequency diversity) to reduce the impact of the time-variant frequency selective channel.Peer ReviewedPostprint (published version

    Temporal and spatial combining for 5G mmWave small cells

    Get PDF
    This chapter proposes the combination of temporal processing through Rake combining based on direct sequence-spread spectrum (DS-SS), and multiple antenna beamforming or antenna spatial diversity as a possible physical layer access technique for fifth generation (5G) small cell base stations (SBS) operating in the millimetre wave (mmWave) frequencies. Unlike earlier works in the literature aimed at previous generation wireless, the use of the beamforming is presented as operating in the radio frequency (RF) domain, rather than the baseband domain, to minimise power expenditure as a more suitable method for 5G small cells. Some potential limitations associated with massive multiple input-multiple output (MIMO) for small cells are discussed relating to the likely limitation on available antennas and resultant beamwidth. Rather than relying, solely, on expensive and potentially power hungry massive MIMO (which in the case of a SBS for indoor use will be limited by a physically small form factor) the use of a limited number of antennas, complimented with Rake combining, or antenna diversity is given consideration for short distance indoor communications for both the SBS) and user equipment (UE). The proposal’s aim is twofold: to solve eroded path loss due to the effective antenna aperture reduction and to satisfy sensitivity to blockages and multipath dispersion in indoor, small coverage area base stations. Two candidate architectures are proposed. With higher data rates, more rigorous analysis of circuit power and its effect on energy efficiency (EE) is provided. A detailed investigation is provided into the likely design and signal processing requirements. Finally, the proposed architectures are compared to current fourth generation long term evolution (LTE) MIMO technologies for their anticipated power consumption and EE

    A Robust Adaptive MMSE Rake Receiver for DS-CDMA System in a Fast Multipath Fading Channel

    Get PDF
    In this paper, we propose a robust adaptive minimum mean square error (MMSE) Rake receiver for asynchronous DS-CDMA systems. The receiver uses the modified MMSE criterion that incorporates the differential detection and the amplitude compensation for interference cancellation in a time-varying multipath fading channel. We investigate that the proposed Rake receiver can achieve the higher output signal to interference plus noise ratio (SINR) than the conventional adaptive Rake receiver, since the modified MMSE criterion does not attempt to track the time-varying MMSE solution. Computer simulations verify that the performance of the proposed Rake receiver is better than those of the conventional and the adaptive Rake receiver
    corecore