2,748 research outputs found

    Real-time programmable acoustooptic synthetic aperture radar processor

    Get PDF
    The acoustooptic time-and-space integrating approach to real-time synthetic aperture radar (SAR) processing is reviewed, and novel hybrid optical/electronic techniques, which generalize the basic architecture, are described. The generalized architecture is programmable and has the ability to compensate continuously for range migration changes in the parameters of the radar/target geometry and anomalous platform motion. The new architecture is applicable to the spotlight mode of SAR, particularly for applications in which real-time onboard processing is required

    Sonar and radar SAR processing for parking lot detection

    Get PDF
    In this paper, SAR processing algorithms for automotive applications are presented and illustrated on data from non-trivial test scenes. The chosen application is parking lot detection. Laboratory results obtained with a teaching sonar experiment emphasize the resolution improvement introduced with range-Doppler SAR processing. A similar improvement is then confirmed through full scale measurements performed with an automotive radar prototype operating at 77GHz in very close range conditions, typical of parking lot detection. The collected data allows a performance comparison between different SAR processing algorithms for realistic targets

    Extension of Wavenumber Domain Focusing for spotlight COSMO-SkyMed SAR Data

    Get PDF
    In this work we describe a method to handle curved orbits in wavenumber domain focusing algorithm for high-resolution SAR data acquired by Low Earth Orbit satellites using spotlight mode. The stand..

    Wide area coverage radar imaging satellite for earth applications

    Get PDF
    A preliminary study was made of a radar imaging satellite for earth applications. A side-looking synthetic-aperture radar was considered and the feasibility of obtaining a wide area coverage to reduce the time required to image a given area was investigated. Two basic approaches were examined; low altitude sun-synchronous orbits using a multibeam/multifrequency radar system and equatorial orbits up to near-synchronous altitude using a single beam system. Surveillance and mapping of ice on the Great Lakes was used as a typical application to focus the study effort

    An introduction to the interim digital SAR processor and the characteristics of the associated Seasat SAR imagery

    Get PDF
    Basic engineering data regarding the Interim Digital SAR Processor (IDP) and the digitally correlated Seasat synthetic aperature radar (SAR) imagery are presented. The correlation function and IDP hardware/software configuration are described, and a preliminary performance assessment presented. The geometric and radiometric characteristics, with special emphasis on those peculiar to the IDP produced imagery, are described

    A Study of Linear Approximation Techniques for SAR Azimuth Processing

    Get PDF
    The application of the step transform subarray processing techniques to synthetic aperture radar (SAR) was studied. The subarray technique permits the application of efficient digital transform computational techniques such as the fast Fourier transform to be applied while offering an effective tool for range migration compensation. Range migration compensation is applied at the subarray level, and with the subarray size based on worst case range migration conditions, a minimum control system is achieved. A baseline processor was designed for a four-look SAR system covering approximately 4096 by 4096 SAR sample field every 2.5 seconds. Implementation of the baseline system was projected using advanced low power technologies. A 20 swath is implemented with approximately 1000 circuits having a power dissipation of from 70 to 195 watts. The baseline batch step transform processor is compared to a continuous strip processor, and variations of the baseline are developed for a wide range of SAR parameters

    High Speed Dim Air Target Detection Using Airborne Radar under Clutter and Jamming Effects

    Get PDF
    The challenging potential problems associated with using airborne radar in detection of high Speed Maneuvering Dim Target (HSMDT) are the highly noise, jamming and clutter effects. The problem is not only how to remove clutter and jamming as well as the range migration and Doppler ambiguity estimation problems due to high relative speed between the targets and airborne radar. Some of the recently published works ignored the range migration problems, while the others ignored the Doppler ambiguity estimation. In this paper a new hybrid technique using Optimum Space Time Adaptive Processing (OSTAP), Second Order Keystone Transform (SOKT), and the Improved Fractional Radon Transform (IFrRT) was proposed. The OSTAP was applied as anti-jamming and clutter rejection method, the SOKT corrects the range curvature and part of the range walk, then the IFrRT estimates the target’ radial acceleration and corrects the residual range walk. The simulation demonstrates the validity and effectiveness of the proposed technique, and its advantages over the previous researches by comparing its probability of detection with the traditional methods. The new approach increases the probability of detection, and also overcomes the limitation of Doppler frequency ambiguity

    Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

    Get PDF
    The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques
    corecore