7,314 research outputs found

    A Generative Model of Natural Texture Surrogates

    Full text link
    Natural images can be viewed as patchworks of different textures, where the local image statistics is roughly stationary within a small neighborhood but otherwise varies from region to region. In order to model this variability, we first applied the parametric texture algorithm of Portilla and Simoncelli to image patches of 64X64 pixels in a large database of natural images such that each image patch is then described by 655 texture parameters which specify certain statistics, such as variances and covariances of wavelet coefficients or coefficient magnitudes within that patch. To model the statistics of these texture parameters, we then developed suitable nonlinear transformations of the parameters that allowed us to fit their joint statistics with a multivariate Gaussian distribution. We find that the first 200 principal components contain more than 99% of the variance and are sufficient to generate textures that are perceptually extremely close to those generated with all 655 components. We demonstrate the usefulness of the model in several ways: (1) We sample ensembles of texture patches that can be directly compared to samples of patches from the natural image database and can to a high degree reproduce their perceptual appearance. (2) We further developed an image compression algorithm which generates surprisingly accurate images at bit rates as low as 0.14 bits/pixel. Finally, (3) We demonstrate how our approach can be used for an efficient and objective evaluation of samples generated with probabilistic models of natural images.Comment: 34 pages, 9 figure

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    S-TREE: Self-Organizing Trees for Data Clustering and Online Vector Quantization

    Full text link
    This paper introduces S-TREE (Self-Organizing Tree), a family of models that use unsupervised learning to construct hierarchical representations of data and online tree-structured vector quantizers. The S-TREE1 model, which features a new tree-building algorithm, can be implemented with various cost functions. An alternative implementation, S-TREE2, which uses a new double-path search procedure, is also developed. S-TREE2 implements an online procedure that approximates an optimal (unstructured) clustering solution while imposing a tree-structure constraint. The performance of the S-TREE algorithms is illustrated with data clustering and vector quantization examples, including a Gauss-Markov source benchmark and an image compression application. S-TREE performance on these tasks is compared with the standard tree-structured vector quantizer (TSVQ) and the generalized Lloyd algorithm (GLA). The image reconstruction quality with S-TREE2 approaches that of GLA while taking less than 10% of computer time. S-TREE1 and S-TREE2 also compare favorably with the standard TSVQ in both the time needed to create the codebook and the quality of image reconstruction.Office of Naval Research (N00014-95-10409, N00014-95-0G57
    corecore