18 research outputs found

    Filter Bank Multicarrier for Massive MIMO

    Full text link
    This paper introduces filter bank multicarrier (FBMC) as a potential candidate in the application of massive MIMO communication. It also points out the advantages of FBMC over OFDM (orthogonal frequency division multiplexing) in the application of massive MIMO. The absence of cyclic prefix in FBMC increases the bandwidth efficiency. In addition, FBMC allows carrier aggregation straightforwardly. Self-equalization, a property of FBMC in massive MIMO that is introduced in this paper, has the impact of reducing (i) complexity; (ii) sensitivity to carrier frequency offset (CFO); (iii) peak-to-average power ratio (PAPR); (iv) system latency; and (v) increasing bandwidth efficiency. The numerical results that corroborate these claims are presented.Comment: 7 pages, 6 figure

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft

    Synchronization Algorithms for FBMC Systems

    Get PDF
    Filter bank multicarrier (FBMC) systems, such as FMT and OFDM/OQAM systems, can provide reduced sensitivity to narrowband interference, high flexibility to allocate group of subchannels to different users and a high spectral containment. On the other hand, as all the multicarrier modulation schemes, one of their major drawbacks is their sensitivity to CFO and symbol timing errors. In this thesis the problem of CFO and symbol timing synchronization is examined and new data-aided and blind estimation techniques are proposed. Specifically, it is presented a new joint symbol timing and CFO synchronization algorithm based on the LS approach. Moreover, the joint ML phase offset, CFO and symbol timing estimator for a multiple access OFDM/OQAM system is considered. It is also proposed a closed-form CFO estimator based on the best linear unbiased estimation principle for FMT systems. Blind CFO estimators based on the ML principle for low SNR are also considered and, moreover, a closed-form CFO synchronization algorithm based on the LS method is derived. Finally, it is also proposed, under the assumption of low SNR, the joint ML symbol timing and phase offset estimator

    Compensating Chromatic Dispersion and Phase Noise using Parallel AFB-MBPS For FBMC-OQAM Optical Communication System

    Get PDF
    Filter Bank Multi-Carrier Offset-QAM (FBMC-OQAM) is one of the hottest topics in research for 5G multi-carrier methods because of its high efficiency in the spectrum, minimal leakage in the side lobes, zero cyclic prefix (CP), and multiphase filter design. Large-scale subcarrier configurations in optical fiber networks need the use of FBMC-OQAM. Chromatic dispersion is critical in optical fiber transmission because it causes different spectral waves (color beams) to travel at different rates. Laser phase noise, which arises when the phase of the laser output drifts with time, is a major barrier that lowers throughput in fiber-optic communication systems. This deterioration may be closely related among channels that share lasers in multichannel fiber-optic systems using methods like wavelength-division multiplexing with frequency combs or space-division multiplexing. In this research, we use parallel Analysis Filter Bank (AFB) equalizers in the receiver part of the FBMC OQAM Optical Communication system to compensate for chromatic dispersion (CD) and phase noise (PN). Following the equalization of CD compensation, the phase of the carriers in the received signal is tracked and compensated using Modified Blind Phase Search (MBPS). The CD and PN compensation techniques are simulated and analyzed numerically and graphically to determine their efficacy. To evaluate the FBMC\u27s efficiency across various equalizers, 16-OQAM is taken into account. Bit Error Rate (BER), Optical Signal-to-Noise Ratio (OSNR), Q-Factor, and Mean Square Error (MSE) were the primary metrics we utilized to evaluate performance. Single-tap equalizer, multi-tap equalizer (N=3), ISDF equalizer with suggested Parallel Analysis Filter Banks (AFBs) (K=3), and MBPS were all set aside for comparison. When compared to other forms of Nonlinear compensation (NLC), the CD and PN tolerance attained by Parallel AFB equalization with MBPS is the greatest

    A Survey of Blind Modulation Classification Techniques for OFDM Signals

    Get PDF
    Blind modulation classification (MC) is an integral part of designing an adaptive or intelligent transceiver for future wireless communications. Blind MC has several applications in the adaptive and automated systems of sixth generation (6G) communications to improve spectral efficiency and power efficiency, and reduce latency. It will become a integral part of intelligent software-defined radios (SDR) for future communication. In this paper, we provide various MC techniques for orthogonal frequency division multiplexing (OFDM) signals in a systematic way. We focus on the most widely used statistical and machine learning (ML) models and emphasize their advantages and limitations. The statistical-based blind MC includes likelihood-based (LB), maximum a posteriori (MAP) and feature-based methods (FB). The ML-based automated MC includes k-nearest neighbors (KNN), support vector machine (SVM), decision trees (DTs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) based MC methods. This survey will help the reader to understand the main characteristics of each technique, their advantages and disadvantages. We have also simulated some primary methods, i.e., statistical- and ML-based algorithms, under various constraints, which allows a fair comparison among different methodologies. The overall system performance in terms bit error rate (BER) in the presence of MC is also provided. We also provide a survey of some practical experiment works carried out through National Instrument hardware over an indoor propagation environment. In the end, open problems and possible directions for blind MC research are briefly discussed

    Doctor of Philosophy

    Get PDF
    dissertationThe demand for high speed communication has been increasing in the past two decades. Multicarrier communication technology has been suggested to address this demand. Orthogonal frequency-division multiplexing (OFDM) is the most widely used multicarrier technique. However, OFDM has a number of disadvantages in time-varying channels, multiple access, and cognitive radios. On the other hand, filterbank multicarrier (FBMC) communication has been suggested as an alternative to OFDM that can overcome the disadvantages of OFDM. In this dissertation, we investigate the application of filtered multitone (FMT), a subset of FBMC modulation methods, to slow fading and fast fading channels. We investigate the FMT transmitter and receiver in continuous and discrete time domains. An efficient implementation of FMT systems is derived and the conditions for perfect reconstruction in an FBMC communication system are presented. We derive equations for FMT in slow fading channels that allow evaluation of FMT when applied to mobile wireless communication systems. We consider using fractionally spaced per tone channel equalizers with different number of taps. The numerical results are presented to investigate the performance of these equalizers. The numerical results show that single-tap equalizers suffice for typical wireless channels. The equalizer design study is advanced by introducing adaptive equalizers which use channel estimation. We derive equations for a minimum mean square error (MMSE) channel estimator and improve the channel estimation by considering the finite duration of channel impulse response. The results of optimum equalizers (when channel is known perfectly) are compared with those of the adaptive equalizers, and it is found that a loss of 1 dB or less incurs. We also introduce a new form of FMT which is specially designed to handle doubly dispersive channels. This method is called FMT-dd (FMT for doubly dispersive channels). The proposed FMT-dd is applied to two common methods of data symbol orientation in the time-frequency space grid; namely, rectangular and hexagonal lattices. The performance of these methods along with OFDM and the conventional FMT are compared and a significant improvement in performance is observed. The FMT-dd design is applied to real-world underwater acoustic (UWA) communication channels. The experimental results from an at-sea experiment (ACOMM10) show that this new design provides a significant gain over OFDM. The feasibility of implementing a MIMO system for multicarrier UWA communication channels is studied through computer simulations. Our study emphasizes the bandwidth efficiency of multicarrier MIMO communications .We show that the value of MIMO to UWA communication is very limited
    corecore