231 research outputs found

    Fine-grained dichotomies for the Tutte plane and Boolean #CSP

    Get PDF
    Jaeger, Vertigan, and Welsh [15] proved a dichotomy for the complexity of evaluating the Tutte polynomial at fixed points: The evaluation is #P-hard almost everywhere, and the remaining points admit polynomial-time algorithms. Dell, Husfeldt, and Wahl\'en [9] and Husfeldt and Taslaman [12], in combination with Curticapean [7], extended the #P-hardness results to tight lower bounds under the counting exponential time hypothesis #ETH, with the exception of the line y=1y=1, which was left open. We complete the dichotomy theorem for the Tutte polynomial under #ETH by proving that the number of all acyclic subgraphs of a given nn-vertex graph cannot be determined in time exp(o(n))exp(o(n)) unless #ETH fails. Another dichotomy theorem we strengthen is the one of Creignou and Hermann [6] for counting the number of satisfying assignments to a constraint satisfaction problem instance over the Boolean domain. We prove that all #P-hard cases are also hard under #ETH. The main ingredient is to prove that the number of independent sets in bipartite graphs with nn vertices cannot be computed in time exp(o(n))exp(o(n)) unless #ETH fails. In order to prove our results, we use the block interpolation idea by Curticapean [7] and transfer it to systems of linear equations that might not directly correspond to interpolation.Comment: 16 pages, 1 figur

    Computational Complexity of Covering Multigraphs with Semi-Edges: Small Cases

    Get PDF
    We initiate the study of computational complexity of graph coverings, aka locally bijective graph homomorphisms, for graphs with semi-edges. The notion of graph covering is a discretization of coverings between surfaces or topological spaces, a notion well known and deeply studied in classical topology. Graph covers have found applications in discrete mathematics for constructing highly symmetric graphs, and in computer science in the theory of local computations. In 1991, Abello et al. asked for a classification of the computational complexity of deciding if an input graph covers a fixed target graph, in the ordinary setting (of graphs with only edges). Although many general results are known, the full classification is still open. In spite of that, we propose to study the more general case of covering graphs composed of normal edges (including multiedges and loops) and so-called semi-edges. Semi-edges are becoming increasingly popular in modern topological graph theory, as well as in mathematical physics. They also naturally occur in the local computation setting, since they are lifted to matchings in the covering graph. We show that the presence of semi-edges makes the covering problem considerably harder; e.g., it is no longer sufficient to specify the vertex mapping induced by the covering, but one necessarily has to deal with the edge mapping as well. We show some solvable cases and, in particular, completely characterize the complexity of the already very nontrivial problem of covering one- and two-vertex (multi)graphs with semi-edges. Our NP-hardness results are proven for simple input graphs, and in the case of regular two-vertex target graphs, even for bipartite ones. We remark that our new characterization results also strengthen previously known results for covering graphs without semi-edges, and they in turn apply to an infinite class of simple target graphs with at most two vertices of degree more than two. Some of the results are moreover proven in a more general setting (e.g., finding k-tuples of pairwise disjoint perfect matchings in regular graphs, or finding equitable partitions of regular bipartite graphs)

    A survey on constructive methods for the Oberwolfach problem and its variants

    Full text link
    The generalized Oberwolfach problem asks for a decomposition of a graph GG into specified 2-regular spanning subgraphs F1,…,FkF_1,\ldots, F_k, called factors. The classic Oberwolfach problem corresponds to the case when all of the factors are pairwise isomorphic, and GG is the complete graph of odd order or the complete graph of even order with the edges of a 11-factor removed. When there are two possible factor types, it is called the Hamilton-Waterloo problem. In this paper we present a survey of constructive methods which have allowed recent progress in this area. Specifically, we consider blow-up type constructions, particularly as applied to the case when each factor consists of cycles of the same length. We consider the case when the factors are all bipartite (and hence consist of even cycles) and a method for using circulant graphs to find solutions. We also consider constructions which yield solutions with well-behaved automorphisms.Comment: To be published in the Fields Institute Communications book series. 23 pages, 2 figure

    Proof of the 1-factorization and Hamilton decomposition conjectures III: approximate decompositions

    Full text link
    In a sequence of four papers, we prove the following results (via a unified approach) for all sufficiently large nn: (i) [1-factorization conjecture] Suppose that nn is even and D≥2⌈n/4⌉−1D\geq 2\lceil n/4\rceil -1. Then every DD-regular graph GG on nn vertices has a decomposition into perfect matchings. Equivalently, χ′(G)=D\chi'(G)=D. (ii) [Hamilton decomposition conjecture] Suppose that D≥⌊n/2⌋D \ge \lfloor n/2 \rfloor . Then every DD-regular graph GG on nn vertices has a decomposition into Hamilton cycles and at most one perfect matching. (iii) We prove an optimal result on the number of edge-disjoint Hamilton cycles in a graph of given minimum degree. According to Dirac, (i) was first raised in the 1950s. (ii) and (iii) answer questions of Nash-Williams from 1970. The above bounds are best possible. In the current paper, we show the following: suppose that GG is close to a complete balanced bipartite graph or to the union of two cliques of equal size. If we are given a suitable set of path systems which cover a set of `exceptional' vertices and edges of GG, then we can extend these path systems into an approximate decomposition of GG into Hamilton cycles (or perfect matchings if appropriate).Comment: We originally split the proof into four papers, of which this was the third paper. We have now combined this series into a single publication [arXiv:1401.4159v2], which will appear in the Memoirs of the AMS. 29 pages, 2 figure
    • …
    corecore