142 research outputs found

    On the structure of the h-vector of a paving matroid.

    Get PDF
    We give two proofs that the h-vector of any paving matroid is a pure 0-sequence, thus answering in the affirmative a conjecture made by Stanley, for this particular class of matroids. We also investigate the problem of obtaining good lower bounds for the number of bases of a paving matroid given its rank and number of elements.The first author was supported by Conacyt of México Proyect8397

    Matroids with nine elements

    Get PDF
    We describe the computation of a catalogue containing all matroids with up to nine elements, and present some fundamental data arising from this cataogue. Our computation confirms and extends the results obtained in the 1960s by Blackburn, Crapo and Higgs. The matroids and associated data are stored in an online database, and we give three short examples of the use of this database.Comment: 22 page

    Generalized Laminar Matroids

    Get PDF
    Nested matroids were introduced by Crapo in 1965 and have appeared frequently in the literature since then. A flat of a matroid MM is Hamiltonian if it has a spanning circuit. A matroid MM is nested if and only if its Hamiltonian flats form a chain under inclusion; MM is laminar if and only if, for every 11-element independent set XX, the Hamiltonian flats of MM containing XX form a chain under inclusion. We generalize these notions to define the classes of kk-closure-laminar and kk-laminar matroids. This paper focuses on structural properties of these classes noting that, while the second class is always minor-closed, the first is if and only if k3k \le 3. The main results are excluded-minor characterizations for the classes of 2-laminar and 2-closure-laminar matroids.Comment: 12 page

    Counting matroids in minor-closed classes

    Full text link
    A flat cover is a collection of flats identifying the non-bases of a matroid. We introduce the notion of cover complexity, the minimal size of such a flat cover, as a measure for the complexity of a matroid, and present bounds on the number of matroids on nn elements whose cover complexity is bounded. We apply cover complexity to show that the class of matroids without an NN-minor is asymptotically small in case NN is one of the sparse paving matroids U2,kU_{2,k}, U3,6U_{3,6}, P6P_6, Q6Q_6, or R6R_6, thus confirming a few special cases of a conjecture due to Mayhew, Newman, Welsh, and Whittle. On the other hand, we show a lower bound on the number of matroids without M(K4)M(K_4)-minor which asymptoticaly matches the best known lower bound on the number of all matroids, due to Knuth.Comment: 13 pages, 3 figure
    corecore