11,181 research outputs found

    VizNet: Towards A Large-Scale Visualization Learning and Benchmarking Repository

    Full text link
    Researchers currently rely on ad hoc datasets to train automated visualization tools and evaluate the effectiveness of visualization designs. These exemplars often lack the characteristics of real-world datasets, and their one-off nature makes it difficult to compare different techniques. In this paper, we present VizNet: a large-scale corpus of over 31 million datasets compiled from open data repositories and online visualization galleries. On average, these datasets comprise 17 records over 3 dimensions and across the corpus, we find 51% of the dimensions record categorical data, 44% quantitative, and only 5% temporal. VizNet provides the necessary common baseline for comparing visualization design techniques, and developing benchmark models and algorithms for automating visual analysis. To demonstrate VizNet's utility as a platform for conducting online crowdsourced experiments at scale, we replicate a prior study assessing the influence of user task and data distribution on visual encoding effectiveness, and extend it by considering an additional task: outlier detection. To contend with running such studies at scale, we demonstrate how a metric of perceptual effectiveness can be learned from experimental results, and show its predictive power across test datasets.Comment: CHI'1

    Meta Dropout: Learning to Perturb Features for Generalization

    Full text link
    A machine learning model that generalizes well should obtain low errors on unseen test examples. Thus, if we know how to optimally perturb training examples to account for test examples, we may achieve better generalization performance. However, obtaining such perturbation is not possible in standard machine learning frameworks as the distribution of the test data is unknown. To tackle this challenge, we propose a novel regularization method, meta-dropout, which learns to perturb the latent features of training examples for generalization in a meta-learning framework. Specifically, we meta-learn a noise generator which outputs a multiplicative noise distribution for latent features, to obtain low errors on the test instances in an input-dependent manner. Then, the learned noise generator can perturb the training examples of unseen tasks at the meta-test time for improved generalization. We validate our method on few-shot classification datasets, whose results show that it significantly improves the generalization performance of the base model, and largely outperforms existing regularization methods such as information bottleneck, manifold mixup, and information dropout

    Coupled Recurrent Network (CRN)

    Full text link
    Many semantic video analysis tasks can benefit from multiple, heterogenous signals. For example, in addition to the original RGB input sequences, sequences of optical flow are usually used to boost the performance of human action recognition in videos. To learn from these heterogenous input sources, existing methods reply on two-stream architectural designs that contain independent, parallel streams of Recurrent Neural Networks (RNNs). However, two-stream RNNs do not fully exploit the reciprocal information contained in the multiple signals, let alone exploit it in a recurrent manner. To this end, we propose in this paper a novel recurrent architecture, termed Coupled Recurrent Network (CRN), to deal with multiple input sources. In CRN, the parallel streams of RNNs are coupled together. Key design of CRN is a Recurrent Interpretation Block (RIB) that supports learning of reciprocal feature representations from multiple signals in a recurrent manner. Different from RNNs which stack the training loss at each time step or the last time step, we propose an effective and efficient training strategy for CRN. Experiments show the efficacy of the proposed CRN. In particular, we achieve the new state of the art on the benchmark datasets of human action recognition and multi-person pose estimation

    ChronoNet: A Deep Recurrent Neural Network for Abnormal EEG Identification

    Full text link
    Brain-related disorders such as epilepsy can be diagnosed by analyzing electroencephalograms (EEG). However, manual analysis of EEG data requires highly trained clinicians, and is a procedure that is known to have relatively low inter-rater agreement (IRA). Moreover, the volume of the data and the rate at which new data becomes available make manual interpretation a time-consuming, resource-hungry, and expensive process. In contrast, automated analysis of EEG data offers the potential to improve the quality of patient care by shortening the time to diagnosis and reducing manual error. In this paper, we focus on one of the first steps in interpreting an EEG session - identifying whether the brain activity is abnormal or normal. To solve this task, we propose a novel recurrent neural network (RNN) architecture termed ChronoNet which is inspired by recent developments from the field of image classification and designed to work efficiently with EEG data. ChronoNet is formed by stacking multiple 1D convolution layers followed by deep gated recurrent unit (GRU) layers where each 1D convolution layer uses multiple filters of exponentially varying lengths and the stacked GRU layers are densely connected in a feed-forward manner. We used the recently released TUH Abnormal EEG Corpus dataset for evaluating the performance of ChronoNet. Unlike previous studies using this dataset, ChronoNet directly takes time-series EEG as input and learns meaningful representations of brain activity patterns. ChronoNet outperforms the previously reported best results by 7.79% thereby setting a new benchmark for this dataset. Furthermore, we demonstrate the domain-independent nature of ChronoNet by successfully applying it to classify speech commands.Comment: 8 pages, 2 figures, 2 table

    Quda: Natural Language Queries for Visual Data Analytics

    Full text link
    Visualization-oriented natural language interfaces (V-NLIs) have been explored and developed in recent years. One challenge faced by V-NLIs is in the formation of effective design decisions that usually requires a deep understanding of user queries. Learning-based approaches have shown potential in V-NLIs and reached state-of-the-art performance in various NLP tasks. However, because of the lack of sufficient training samples that cater to visual data analytics, cutting-edge techniques have rarely been employed to facilitate the development of V-NLIs. We present a new dataset, called Quda, to help V-NLIs understand free-form natural language. Our dataset contains 14;035 diverse user queries annotated with 10 low-level analytic tasks that assist in the deployment of state-of-the-art techniques for parsing complex human language. We achieve this goal by first gathering seed queries with data analysts who are target users of V-NLIs. Then we employ extensive crowd force for paraphrase generation and validation. We demonstrate the usefulness of Quda in building V-NLIs by creating a prototype that makes effective design decisions for free-form user queries. We also show that Quda can be beneficial for a wide range of applications in the visualization community by analyzing the design tasks described in academic publications.Comment: This work isn't sufficiently exhaustive. We need to do some new work on thi

    Finding and Visualizing Weaknesses of Deep Reinforcement Learning Agents

    Full text link
    As deep reinforcement learning driven by visual perception becomes more widely used there is a growing need to better understand and probe the learned agents. Understanding the decision making process and its relationship to visual inputs can be very valuable to identify problems in learned behavior. However, this topic has been relatively under-explored in the research community. In this work we present a method for synthesizing visual inputs of interest for a trained agent. Such inputs or states could be situations in which specific actions are necessary. Further, critical states in which a very high or a very low reward can be achieved are often interesting to understand the situational awareness of the system as they can correspond to risky states. To this end, we learn a generative model over the state space of the environment and use its latent space to optimize a target function for the state of interest. In our experiments we show that this method can generate insights for a variety of environments and reinforcement learning methods. We explore results in the standard Atari benchmark games as well as in an autonomous driving simulator. Based on the efficiency with which we have been able to identify behavioural weaknesses with this technique, we believe this general approach could serve as an important tool for AI safety applications

    SkipNet: Learning Dynamic Routing in Convolutional Networks

    Full text link
    While deeper convolutional networks are needed to achieve maximum accuracy in visual perception tasks, for many inputs shallower networks are sufficient. We exploit this observation by learning to skip convolutional layers on a per-input basis. We introduce SkipNet, a modified residual network, that uses a gating network to selectively skip convolutional blocks based on the activations of the previous layer. We formulate the dynamic skipping problem in the context of sequential decision making and propose a hybrid learning algorithm that combines supervised learning and reinforcement learning to address the challenges of non-differentiable skipping decisions. We show SkipNet reduces computation by 30-90% while preserving the accuracy of the original model on four benchmark datasets and outperforms the state-of-the-art dynamic networks and static compression methods. We also qualitatively evaluate the gating policy to reveal a relationship between image scale and saliency and the number of layers skipped.Comment: ECCV 2018 Camera ready version. Code is available at https://github.com/ucbdrive/skipne

    How is Gaze Influenced by Image Transformations? Dataset and Model

    Full text link
    Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time consuming and expensive. Most of current studies on human attention and saliency modeling have used high quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial network (dubbed GazeGAN). A modified UNet is proposed as the generator of the GazeGAN, which combines classic skip connections with a novel center-surround connection (CSC), in order to leverage multi level features. We also propose a histogram loss based on Alternative Chi Square Distance (ACS HistLoss) to refine the saliency map in terms of luminance distribution. Extensive experiments and comparisons over 3 datasets indicate that GazeGAN achieves the best performance in terms of popular saliency evaluation metrics, and is more robust to various perturbations. Our code and data are available at: https://github.com/CZHQuality/Sal-CFS-GAN

    How to improve the interpretability of kernel learning

    Full text link
    In recent years, machine learning researchers have focused on methods to construct flexible and interpretable prediction models. However, an interpretability evaluation, a relationship between generalization performance and an interpretability of the model and a method for improving the interpretability have to be considered. In this paper, a quantitative index of the interpretability is proposed and its rationality is proved, and equilibrium problem between the interpretability and the generalization performance is analyzed. Probability upper bound of the sum of the two performances is analyzed. For traditional supervised kernel machine learning problem, a universal learning framework is put forward to solve the equilibrium problem between the two performances. The condition for global optimal solution based on the framework is deduced. The learning framework is applied to the least-squares support vector machine and is evaluated by some experiments.Comment: arXiv admin note: text overlap with arXiv:1811.0774
    • …
    corecore