12,716 research outputs found

    On Hidden States in Quantum Random Walks

    Full text link
    It was recently pointed out that identifiability of quantum random walks and hidden Markov processes underlie the same principles. This analogy immediately raises questions on the existence of hidden states also in quantum random walks and their relationship with earlier debates on hidden states in quantum mechanics. The overarching insight was that not only hidden Markov processes, but also quantum random walks are finitary processes. Since finitary processes enjoy nice asymptotic properties, this also encourages to further investigate the asymptotic properties of quantum random walks. Here, answers to all these questions are given. Quantum random walks, hidden Markov processes and finitary processes are put into a unifying model context. In this context, quantum random walks are seen to not only enjoy nice ergodic properties in general, but also intuitive quantum-style asymptotic properties. It is also pointed out how hidden states arising from our framework relate to hidden states in earlier, prominent treatments on topics such as the EPR paradoxon or Bell's inequalities.Comment: 26 page

    Cluster-based reduced-order modelling of a mixing layer

    Full text link
    We propose a novel cluster-based reduced-order modelling (CROM) strategy of unsteady flows. CROM combines the cluster analysis pioneered in Gunzburger's group (Burkardt et al. 2006) and and transition matrix models introduced in fluid dynamics in Eckhardt's group (Schneider et al. 2007). CROM constitutes a potential alternative to POD models and generalises the Ulam-Galerkin method classically used in dynamical systems to determine a finite-rank approximation of the Perron-Frobenius operator. The proposed strategy processes a time-resolved sequence of flow snapshots in two steps. First, the snapshot data are clustered into a small number of representative states, called centroids, in the state space. These centroids partition the state space in complementary non-overlapping regions (centroidal Voronoi cells). Departing from the standard algorithm, the probabilities of the clusters are determined, and the states are sorted by analysis of the transition matrix. Secondly, the transitions between the states are dynamically modelled using a Markov process. Physical mechanisms are then distilled by a refined analysis of the Markov process, e.g. using finite-time Lyapunov exponent and entropic methods. This CROM framework is applied to the Lorenz attractor (as illustrative example), to velocity fields of the spatially evolving incompressible mixing layer and the three-dimensional turbulent wake of a bluff body. For these examples, CROM is shown to identify non-trivial quasi-attractors and transition processes in an unsupervised manner. CROM has numerous potential applications for the systematic identification of physical mechanisms of complex dynamics, for comparison of flow evolution models, for the identification of precursors to desirable and undesirable events, and for flow control applications exploiting nonlinear actuation dynamics.Comment: 48 pages, 30 figures. Revised version with additional material. Accepted for publication in Journal of Fluid Mechanic

    On the gap between deterministic and probabilistic joint spectral radii for discrete-time linear systems

    Get PDF
    Given a discrete-time linear switched system Σ(A)\Sigma(\mathcal A) associated with a finite set A\mathcal A of matrices, we consider the measures of its asymptotic behavior given by, on the one hand, its deterministic joint spectral radius ρd(A)\rho_{\mathrm d}(\mathcal A) and, on the other hand, its probabilistic joint spectral radii ρp(ν,P,A)\rho_{\mathrm p}(\nu,P,\mathcal A) for Markov random switching signals with transition matrix PP and a corresponding invariant probability ν\nu. Note that ρd(A)\rho_{\mathrm d}(\mathcal A) is larger than or equal to ρp(ν,P,A)\rho_{\mathrm p}(\nu,P,\mathcal A) for every pair (ν,P)(\nu, P). In this paper, we investigate the cases of equality of ρd(A)\rho_{\mathrm d}(\mathcal A) with either a single ρp(ν,P,A)\rho_{\mathrm p}(\nu,P,\mathcal A) or with the supremum of ρp(ν,P,A)\rho_{\mathrm p}(\nu,P,\mathcal A) over (ν,P)(\nu,P) and we aim at characterizing the sets A\mathcal A for which such equalities may occur

    Transport in finite size systems: an exit time approach

    Full text link
    In the framework of chaotic scattering we analyze passive tracer transport in finite systems. In particular, we study models with open streamlines and a finite number of recirculation zones. In the non trivial case with a small number of recirculation zones a description by mean of asymptotic quantities (such as the eddy diffusivity) is not appropriate. The non asymptotic properties of dispersion are characterized by means of the exit time statistics, which shows strong sensitivity on initial conditions. This yields a probability distribution function with long tails, making impossible a characterization in terms of a unique typical exit time.Comment: 16 RevTeX pages + 6 eps-figures include
    corecore