396,022 research outputs found

    Effect of rounded corners on the magnetic properties of pyramidal-shaped shell structures

    Get PDF
    In recent years, the advance of novel chemical growth techniques has led to the fabrication of complex, three-dimensional magnetic nanostructures. The corners and edges of such realistic geometries are generally not sharp but rounded. In a previous article we have argued that high demagnetization fields in the vicinity of sharp edges lead to the formation of an asymmetric vortex state in pyramidal-shaped magnetic shell structures. The asymmetric vortex state is potentially interesting with respect to future magnetic memory devices. In this work a micromagnetic model is used to investigate the effect of rounded corners and edges on the magnetic reversal process within these pyramidal-shaped magnetic shell structures. In particular, we explore the degree of rounding, which has to be introduced in order to suppress the asymmetric vortex state. Another emphasis is placed on the magnetic reversal of (quasi-)homogeneous states within these structures. We demonstrate that the rounding of corners significantly reduces the coercivity. This complies with former studies on cuboidal structures, which suggest the important effect of corners on the magnetic reversal of homogeneous magnetic states. The present study uses a finite-element discretization for the numerical solution of the micromagnetic equations, which provides flexibility with respect to the modeling of complex shapes. In particular, this method is very accurate with respect to structures with a smooth surface

    A class of asymmetric gapped Hamiltonians on quantum spin chains and its characterization I

    Get PDF
    We introduce a class of gapped Hamiltonians on quantum spin chains, which allows asymmetric edge ground states. This class is an asymmetric generalization of the class of Hamiltonians in [FNS]. It can be characterized by five qualitative physical properties of ground state structures. In this Part I, we introduce the models and investigate their properties.Comment: Final versio

    An optically driven quantum dot quantum computer

    Get PDF
    We propose a quantum computer structure based on coupled asymmetric single-electron quantum dots. Adjacent dots are strongly coupled by means of electric dipole-dipole interactions enabling rapid computation rates. Further, the asymmetric structures can be tailored for a long coherence time. The result maximizes the number of computation cycles prior to loss of coherence.Comment: 4 figure

    Connected Coordination: Network Structure and Group Coordination

    Get PDF
    Networks can affect a group’s ability to solve a coordination problem. We utilize laboratory experiments to study the conditions under which groups of subjects can solve coordination games. We investigate a variety of different network structures, and we also investigate coordination games with symmetric and asymmetric payoffs. Our results show that network connections facilitate coordination in both symmetric and asymmetric games. Most significantly, we find that increases in the number of network connections encourage coordination even when payoffs are highly asymmetric. These results shed light on the conditions that may facilitate coordination in real-world networks

    Carbon-doped high mobility two-dimensional hole gases on (110) faced GaAs

    Get PDF
    Carbon-doped high mobility two-dimensional hole gases grown on (110) oriented GaAs substrates have been grown with hole mobilities exceeding 10^6 cm^2/Vs in single heterojunction GaAs/AlGaAs structures. At these high mobilities, a pronounced mobility anisotropy has been observed. Rashba induced spin-splitting in these asymmetric structures has been found to be independent on the transport direction

    Controlling heat transport and flow structures in thermal turbulence using ratchet surfaces

    Get PDF
    In this combined experimental and numerical study on thermally driven turbulence in a rectangular cell, the global heat transport and the coherent flow structures are controlled with an asymmetric ratchet-like roughness on the top and bottom plates. We show that, by means of symmetry breaking due to the presence of the ratchet structures on the conducting plates, the orientation of the Large Scale Circulation Roll (LSCR) can be locked to a preferred direction even when the cell is perfectly leveled out. By introducing a small tilt to the system, we show that the LSCR orientation can be tuned and controlled. The two different orientations of LSCR give two quite different heat transport efficiencies, indicating that heat transport is sensitive to the LSCR direction over the asymmetric roughness structure. Through a quantitative analysis of the dynamics of thermal plume emissions and the orientation of the LSCR over the asymmetric structure, we provide a physical explanation for these findings. The current work has important implications for passive and active flow control in engineering, bio-fluid dynamics, and geophysical flows.Comment: 5 pages, 5 figures, Physical Review Letters (in Press

    The effect of differential refraction on wave propagation in rotating pulsar magnetospheres

    Full text link
    Refraction of wave propagation in a corotating pulsar magnetospheric plasma is considered as a possible interpretation for observed asymmetric pulse profiles with multiple components. The pulsar radio emission produced inside the magnetosphere propagates outward through the rotating magnetosphere, subject to refraction by the intervening plasma that is spatially inhomogeneous. Both effects of a relativistic distribution of the plasma and rotation on wave propagation are considered. It is shown that refraction coupled with rotation can produce asymmetric conal structures of the profile. The differential refraction due to the rotation can cause the conal structures to skew toward the rotation direction and lead to asymmetry in relative intensities between the leading and trailing components. Both of these features are potentially observable.Comment: 9 pages, 7 figures, accepted for publication in MNRA
    • …
    corecore