218 research outputs found

    Reduced clique graphs of chordal graphs

    Get PDF
    AbstractWe investigate the properties of chordal graphs that follow from the well-known fact that chordal graphs admit tree representations. In particular, we study the structure of reduced clique graphs which are graphs that canonically capture all tree representations of chordal graphs. We propose a novel decomposition of reduced clique graphs based on two operations: edge contraction and removal of the edges of a split. Based on this decomposition, we characterize asteroidal sets in chordal graphs, and discuss chordal graphs that admit a tree representation with a small number of leaves

    The leafage of a chordal graph

    Full text link
    The leafage l(G) of a chordal graph G is the minimum number of leaves of a tree in which G has an intersection representation by subtrees. We obtain upper and lower bounds on l(G) and compute it on special classes. The maximum of l(G) on n-vertex graphs is n - lg n - (1/2) lg lg n + O(1). The proper leafage l*(G) is the minimum number of leaves when no subtree may contain another; we obtain upper and lower bounds on l*(G). Leafage equals proper leafage on claw-free chordal graphs. We use asteroidal sets and structural properties of chordal graphs.Comment: 19 pages, 3 figure

    On asteroidal sets in chordal graphs

    Get PDF
    We analyze the relation between three parameters of a chordal graph G: the number of non-separating cliques nsc(G), the asteroidal number an(G) and the leafage l(G). We show that an(G) is equal to the maximum value of nsc(H) over all connected induced subgraphs H of G. As a corollary, we prove that if G has no separating simplicial cliques then an(G)=l(G). A graph G is minimal k-asteroidal if an(G)=k and an(H)3; for k=3 it is the family described by Lekerkerker and Boland to characterize interval graphs. We prove that, for every minimal k-asteroidal chordal graph, all the above parameters are equal to k. In addition, we characterize the split graphs that are minimal k-asteroidal and obtain all the minimal 4-asteroidal split graphs. Finally, we applied our results on asteroidal sets to describe the clutters with k edges that are minor-minimal in the sense that every minor has less than k edges.Facultad de Ciencias Exacta

    Boxicity and Cubicity of Asteroidal Triple free graphs

    Get PDF
    An axis parallel dd-dimensional box is the Cartesian product R1×R2×...×RdR_1 \times R_2 \times ... \times R_d where each RiR_i is a closed interval on the real line. The {\it boxicity} of a graph GG, denoted as \boxi(G), is the minimum integer dd such that GG can be represented as the intersection graph of a collection of dd-dimensional boxes. An axis parallel unit cube in dd-dimensional space or a dd-cube is defined as the Cartesian product R1×R2×...×RdR_1 \times R_2 \times ... \times R_d where each RiR_i is a closed interval on the real line of the form [ai,ai+1][a_i,a_i + 1]. The {\it cubicity} of GG, denoted as \cub(G), is the minimum integer dd such that GG can be represented as the intersection graph of a collection of dd-cubes. Let S(m)S(m) denote a star graph on m+1m+1 nodes. We define {\it claw number} of a graph GG as the largest positive integer kk such that S(k)S(k) is an induced subgraph of GG and denote it as \claw. Let GG be an AT-free graph with chromatic number χ(G)\chi(G) and claw number \claw. In this paper we will show that \boxi(G) \leq \chi(G) and this bound is tight. We also show that \cub(G) \leq \boxi(G)(\ceil{\log_2 \claw} +2) ≤\leq \chi(G)(\ceil{\log_2 \claw} +2). If GG is an AT-free graph having girth at least 5 then \boxi(G) \leq 2 and therefore \cub(G) \leq 2\ceil{\log_2 \claw} +4.Comment: 15 pages: We are replacing our earlier paper regarding boxicity of permutation graphs with a superior result. Here we consider the boxicity of AT-free graphs, which is a super class of permutation graph
    • …
    corecore