270 research outputs found

    EEG source analysis during circular rhythmic human arm movements

    Get PDF
    Tese de mestrado integrado, Engenharia Biomédica e Biofísica (Engenharia Clínica e Instrumentação Médica) Universidade de Lisboa, Faculdade de Ciências, 2017Decoding arm movement trajectory from brain signals would allow motor impaired people to control an arm prosthetic. Studies show that we can estimate a vector that points in the direction of arm movements based on single motor neuron activity - the population vector. This type of recording requires the surgical insertion of electrodes in the cerebral cortex. Although such invasive recordings would offer high spatial resolution, noninvasive recording have the advantage of high temporal resolution and no need for surgery. Researchers have managed to decode movement properties from noninvasive brain signals with similar accuracy as from invasive recordings. But can we find a noninvasive analogous of the population vector, a vector that points in the direction of the arm movement? This was the motivation for this thesis. To approach this question we acquired EEG, EOG and kinematic data from 12 healthy subjects while they performed a rhythmic circular right arm movement. We analyzed the data in the time and frequency domains. In the time domain we explored mainly the data averaged over cycles. We found a pattern that looked as if the potentials in the scalp rotated with the arm. To better visualize this rotation, we fit one dipole per time-stamp in the averaged cycle data of each subject to describe the scalp’s potentials. The dipoles rotated along the cycle for all subjects, most of them in the same direction and plane of rotation, with exception for two subjects whose rotation was opposite and three subjects with a slightly different rotation plan. In the frequency domain, we used the Source Power Comodulation algorithm (SPoC), an algorithm that searches for components whose power correlates with a target variable, in our case, the arm kinematics. By applying this algorithm to 20-24 Hz band-pass filtered data, we found two components per subject, each calculated with different kinematic target variables. The results show components that when applied to the non band-pass filtered data, created signals whose power spectrum highly correlated with the given targets (the average of the absolute correlations being 85.5%). The physiological reason for both these phenomena is not entirely understood. To find the analogous of the population vector there is still a long way to go, and we hope this thesis was a first step towards it.O cérebro controla direta ou indiretamente todas as ações do corpo humano, entre elas o nosso movimento. O movimento é uma capacidade fundamental ao ser humano e, por essa mesma razão, indivíduos que sofram de incapacidades motoras têm uma redução considerável da sua qualidade de vida. Uma interface cérebro-computador (mais conhecida pelo seu nome em inglês brain-computer interface (BCI)) é um sistema que permite o controlo de dispositivos externos usando sinais cerebrais. Esta tecnologia é particularmente interessante para pessoas com incapacidade motora uma vez que não necessita de input físico e poderia ser usada para controlar uma neuroprótese ou um braço robótico. Existem várias estratégias que possibilitam o controlo destes sistemas, mas para o controlo de uma prótese do braço seria preferível usar uma estratégia natural, que não implicasse uma aprendizagem exaustiva por parte do utilizador. Para esse fim, é necessário descodificar vários parâmetros motores de acordo com a intenção do utilizador, como por exemplo, a direção do braço. A possibilidade de um dia conseguir descodificar sinais cerebrais para o controlo de dispositivos externos já começa a ganhar forma, mas ainda não é possível a um nível suficientemente eficaz. Usando métodos invasivos de aquisição de sinais cerebrais que requerem cirurgia para implantar elétrodos no córtex cerebral, Georgopoulos et al. conseguiram distinguir entre movimentos direcionais (em 8 direções num plano horizontal) em macacos. Nessas experiências criou o conceito de vetor de população (population vector) que é um vetor calculado a partir da atividade de neurónios motores que tem a particularidade de apontar na direção do movimento executado. Já no campo dos métodos de aquisição não-invasivos podemos destacar o eletroencefalograma (EEG) e o magnetoencefalograma (MEG) que adquirem sinais elétricos e magnéticos (respetivamente) com sensores colocados fora do crânio. Vários investigadores usaram estes métodos de aquisição para descodificar sinais cerebrais durante tarefas de movimento direcionais usando regressões lineares em sinais de baixa frequência, e modulações em frequência para sinais na gama dos 50-90 Hz (banda de frequência ϒ) e em frequência mais baixas para os 10-30 Hz (bandas de frequência α e β). Algo que ainda não foi estudado é a possibilidade de encontrar um análogo ao vetor população usando métodos não-invasivos. Este não teria os mesmos princípios do vetor de Georgopoulos, uma vez que nos é impossível inferir a atividade de neurónios singulares em métodos não-invasivos, mas teria o mesmo objetivo: apontar na direção do movimento executado. Para explorar este conceito realizámos aquisição de dados EEG, eletrooculograma (EOG) e dados cinéticos do braço direito de 12 sujeitos saudáveis, enquanto estes executavam um movimento rítmico, circular, no sentido dos ponteiros do relógio num plano vertical à sua frente. Durante a aquisição, os sujeitos focaram o seu olhar numa cruz mostrada através de um monitor colocado a sua frente, de forma a minimizar os movimentos oculares. Adicionalmente, uma divisória foi colocada perto do lado direito da face de cada sujeito impedindo os mesmos de observarem o seu braço enquanto realizavam o movimento requisitado, não obtendo assim qualquer feedback visual do seu membro superior. Os dados cinéticos foram adquiridos com um sensor Kinect para a Xbox 360 que ao longo da experiência localizou as junções do braço direito dos sujeitos. Os dados cinéticos foram filtrados com um passa-banda 0.3-0.8 Hz e, ao longo dos ciclos do braço, os pontos extremos do braço (i.e., os máximos e mínimos nas coordenadas vertical e horizontal) foram anotados nos dados para possibilitar a associação dos sinais cerebrais com a trajetória do braço em cada ciclo. Para cada sujeito os canais EEG ruidosos foram interpolados, os dados foram referenciados à média comum de todos os canais, e os sinais foram filtrados numa banda de frequência 0.25-100 Hz e com um filtro tapa banda nos 50 e nos 100 Hz, este último para rejeitar o ruído de fundo. Os sinais de EEG e EOG foram separados em épocas conforme a posição do braço, sendo que cada época passou então a consistir num ciclo do braço completo que começa no ponto mais alto da coordenada vertical. Cada época foi depois temporalmente distorcida para que todas tivessem a mesma duração. As épocas com artefactos foram rejeitadas da análise usando métodos automáticos de rejeição. Independent Component Analysis (ICA) foi utilizada para identificar e posteriormente rejeitar componentes independentes referentes a movimentos musculares e oculares. Por fim, os dados foram explorados em ambos os domínios de tempo e frequência. No domínio do tempo, estudámos mais especificamente a média das épocas de EEG e EOG durante os ciclos do braço. Uma vez que sinais não-invasivos são muito sujeitos a ruído, a média elimina artefactos singulares e acentua os sinais que aparecem constantemente nos dados. Os sinais do ciclo médio mostraram um padrão interessante para todos os sujeitos; um comportamento rotacional ao longo da rotação do braço direito. Para acompanhar a rotação dos potenciais, procurámos por um dipolo que descrevesse a distribuição topográfica a cada ponto do tempo. A rotação dos potenciais do EEG ao longo do ciclo médio foram verificados com a rotação da direção do dipolo ao longo do ciclo. A grande maioria dos sujeitos obteve um dipolo a rodar no mesmo sentido no mesmo plano (segundo a regra da mão direita, com um vetor de rotação a apontar para a zona frontal esquerda do cérebro). Cinco sujeitos foram a exceção, 2 desses cujo dipolo rodava no sentido contrário, e os restantes 3 sujeitos cujo dipolo rodava no mesmo sentido, mas num plano ligeiramente diferente. Em todos os sujeitos o dipolo ajustado rodava, de forma relativamente uniforme. No domínio da frequência, estudámos em particular a banda de frequência dos 20 aos 24 Hz. Escolheuse esta banda de frequência pois demonstrou os resultados mais interessantes e já tinha sido utilizada em estudos prévios. Usámos um algoritmo chamado SPoC (Source Power Comodulation) que encontra componentes de atividade cerebral cuja amplitude em frequência correlacione com uma variável alvo. Como variável alvo usámos os dados cinéticos do braço direito, e como input os dados cerebrais filtrados por um filtro passa-banda (20-24 Hz). Os resultados traduziram-se numa série de componentes cuja amplitude correlacionava ou anti-correlacionava com o movimento do braço, muitas delas com projecções topográficas consistentes com as áreas cerebrais motoras. Encontraram-se algumas semelhanças entre os padrões de ativação das componentes do SPoC dos vários sujeitos, ainda que os resultados variassem entre cada um. Ao projetar as componentes aos dados não-filtrados pelo passa-banda, verificamos que as modelações em frequência de facto correlacionam com as variáveis-alvo como esperado, com uma média da norma das correlações de todos os sujeitos a 85,5%. No domínio temporal, ainda que recorrendo à média de todos os ciclos (épocas), este é o primeiro estudo que demonstra de forma não-invasiva, a existência de um dipolo com comportamento rotacional ao longo da rotação do braço. Para o seu uso em tecnologias de BCI, é necessário encontrar o mesmo fenómeno em épocas únicas, tornando possível uma classificação em single-trial e em tempo real. No que toca aos resultados no domínio da frequência, a procura por componentes cuja fonte poderia estar envolvida na criação do movimento circular foi também bem-sucedida. Este estudo abriu portas para uma série de investigações futuras. Para trabalhos posteriores destaco a necessidade de uma análise estatística, de usar mais do que um dipolo para descrever a distribuição de potenciais no domínio temporal, de explorar os dados em cada movimento e não apenas a sua média, e de explorar paradigmas semelhantes durante o movimento do braço esquerdo. Os resultados desta tese serviram, portanto, como primeiro passo na direção de encontrar o análogo não-invasivo do vetor de população

    Python for Large-Scale Electrophysiology

    Get PDF
    Electrophysiology is increasingly moving towards highly parallel recording techniques which generate large data sets. We record extracellularly in vivo in cat and rat visual cortex with 54-channel silicon polytrodes, under time-locked visual stimulation, from localized neuronal populations within a cortical column. To help deal with the complexity of generating and analysing these data, we used the Python programming language to develop three software projects: one for temporally precise visual stimulus generation (“dimstim”); one for electrophysiological waveform visualization and spike sorting (“spyke”); and one for spike train and stimulus analysis (“neuropy”). All three are open source and available for download (http://swindale.ecc.ubc.ca/code). The requirements and solutions for these projects differed greatly, yet we found Python to be well suited for all three. Here we present our software as a showcase of the extensive capabilities of Python in neuroscience

    Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics

    Get PDF
    Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach

    Validation and investigation of large-scale neural recordings across multiple visual brain areas of mice

    Get PDF
    The recently developed ability to simultaneously record thousands of neurons provides unprecedented opportunity for answering important questions about the brain. However, reliable analysis of large-scale neural data has to be established in advance to answer questions. The conducted project is two-fold: In the first half, I validated the reliability of large-scale neural data analysis, and in the second half, I applied these methods to large-scale neural data to investigate how neural information processing in mice is influenced by neural oscillations in multiple visual brain areas. To validate the method, I first benchmarked two commonly used spike-sorting algorithms: Kilosort2 and Klustakwik2 in detectability of pairwise neuronal functional connectivity. Then, I developed an analysis pipeline of intrinsic signal imaging that non-invasively identifies specific visual cortical areas and their functional map. Then, I applied these validated methods to investigate coherent narrowband gamma oscillations (NBG) close to 60Hz (50 -70Hz) and prominent in multiple visual areas of mice during visual processing. More specifically, I investigated how NBG is represented in visual areas and inspect the role of NBG in visual processing. NBG is present in higher visual areas (HVAs) as well as in the visual thalamus and the primary visual cortex, as previously detailed in literature. Interestingly, there is a hierarchy of the coherence and power of NBG present in HVAs and it is consistent with the thalamo-cortical hierarchy that processes visual stimuli. Also, narrowband gamma propagates through local subnetworks rather than globally. Moreover, two neuronal clusters exist in LGN and exhibit two different coherent NBGs, and also have different visual preference to ON/OFF stimulus. With this result, I suggest two hypotheses for the role of NBG: First, that NBG synchronize visual brain areas for efficient communication between them, also known as the “communication through coherence” hypothesis. Second, that narrowband gamma encodes luminance information in a computationally efficient way.M.S

    MRI Artefact Augmentation: Robust Deep Learning Systems and Automated Quality Control

    Get PDF
    Quality control (QC) of magnetic resonance imaging (MRI) is essential to establish whether a scan or dataset meets a required set of standards. In MRI, many potential artefacts must be identified so that problematic images can either be excluded or accounted for in further image processing or analysis. To date, the gold standard for the identification of these issues is visual inspection by experts. A primary source of MRI artefacts is caused by patient movement, which can affect clinical diagnosis and impact the accuracy of Deep Learning systems. In this thesis, I present a method to simulate motion artefacts from artefact-free images to augment convolutional neural networks (CNNs), increasing training appearance variability and robustness to motion artefacts. I show that models trained with artefact augmentation generalise better and are more robust to real-world artefacts, with negligible cost to performance on clean data. I argue that it is often better to optimise frameworks end-to-end with artefact augmentation rather than learning to retrospectively remove artefacts, thus enforcing robustness to artefacts at the feature level representation of the data. The labour-intensive and subjective nature of QC has increased interest in automated methods. To address this, I approach MRI quality estimation as the uncertainty in performing a downstream task, using probabilistic CNNs to predict segmentation uncertainty as a function of the input data. Extending this framework, I introduce a novel decoupled uncertainty model, enabling separate uncertainty predictions for different types of image degradation. Training with an extended k-space artefact augmentation pipeline, the model provides informative measures of uncertainty on problematic real-world scans classified by QC raters and enables sources of segmentation uncertainty to be identified. Suitable quality for algorithmic processing may differ from an image's perceptual quality. Exploring this, I pose MRI visual quality assessment as an image restoration task. Using Bayesian CNNs to recover clean images from noisy data, I show that the uncertainty indicates the possible recoverability of an image. A multi-task network combining uncertainty-aware artefact recovery with tissue segmentation highlights the distinction between visual and algorithmic quality, which has the impact that, depending on the downstream task, less data should be discarded for purely visual quality reasons

    All-optical interrogation of neural circuits during behaviour

    Get PDF
    This thesis explores the fundamental question of how patterns of neural activity encode information and guide behaviour. To address this, one needs three things: a way to record neural activity so that one can correlate neuronal responses with environmental variables; a flexible and specific way to influence neural activity so that one can modulate the variables that may underlie how information is encoded; a robust behavioural paradigm that allows one to assess how modulation of both environmental and neural variables modify behaviour. Techniques combining all three would be transformative for investigating which features of neural activity, and which neurons, most influence behavioural output. Previous electrical and optogenetic microstimulation studies have told us much about the impact of spatially or genetically defined groups of neurons, however they lack the flexibility to probe the contribution of specific, functionally defined subsets. In this thesis I leverage a combination of existing technologies to approach this goal. I combine two-photon calcium imaging with two-photon optogenetics and digital holography to generate an “all-optical” method for simultaneous reading and writing of neural activity in vivo with high spatio-temporal resolution. Calcium imaging allows for cellular resolution recordings from neural populations. Two-photon optogenetics allows for targeted activation of individual cells. Digital holography, using spatial light modulators (SLMs), allows for simultaneous photostimulation of tens to hundreds of neurons in arbitrary spatial locations. Taken together, I demonstrate that this method allows one to map the functional signature of neurons in superficial mouse barrel cortex and to target photostimulation to functionally-defined subsets of cells. I develop a suite of software that allows for quick, intuitive execution of such experiments and I combine this with a behavioural paradigm testing the effect of targeted perturbations on behaviour. In doing so, I demonstrate that animals are able to reliably detect the targeted activation of tens of neurons, with some sensitive to as few as five cortical cells. I demonstrate that such learning can be specific to targeted cells, and that the lower bound of perception shifts with training. The temporal structure of such perturbations had little impact on behaviour, however different groups of neurons drive behaviour to different extents. In order to probe which characteristics underly such variation, I tested whether the sensory response strength or correlation structure of targeted ensembles influenced their behavioural salience. Whilst these final experiments were inconclusive, they demonstrate their feasibility and provide us with some key actionable improvements that could further strengthen the all-optical approach. This thesis therefore represents a significant step forward towards the goal of combining high resolution readout and perturbation of neural activity with behaviour in order to investigate which features of the neural code are behaviourally relevant
    corecore