1,943 research outputs found

    NFA reduction via hypergraph vertex cover approximation

    Get PDF
    In this thesis, we study in minimum vertex cover problem on the class of k-partite k-uniform hypergraphs. This problem arises when reducing the size of nondeterministic finite automata (NFA) using preorders, as suggested by Champarnaud and Coulon. It has been shown that reducing NFAs using preorders is at least as hard as computing a minimal vertex cover on 3-partite 3-uniform hypergraphs, which is NP-hard. We present several classes of regular languages for which NFAs that recognize them can be optimally reduced via preorders. We introduce an algorithm for approximating vertex cover on k-partite k-uniform hypergraphs based on a theorem by Lovász and explore the use of fractional cover algorithms to improve the running time at the expense of a small increase in the approximation ratio

    The Feedback Arc Set Problem with Triangle Inequality is a Vertex Cover Problem

    Full text link
    We consider the (precedence constrained) Minimum Feedback Arc Set problem with triangle inequalities on the weights, which finds important applications in problems of ranking with inconsistent information. We present a surprising structural insight showing that the problem is a special case of the minimum vertex cover in hypergraphs with edges of size at most 3. This result leads to combinatorial approximation algorithms for the problem and opens the road to studying the problem as a vertex cover problem

    Optimal Distributed Covering Algorithms

    Get PDF
    We present a time-optimal deterministic distributed algorithm for approximating a minimum weight vertex cover in hypergraphs of rank f. This problem is equivalent to the Minimum Weight Set Cover problem in which the frequency of every element is bounded by f. The approximation factor of our algorithm is (f+epsilon). Let Delta denote the maximum degree in the hypergraph. Our algorithm runs in the congest model and requires O(log{Delta} / log log Delta) rounds, for constants epsilon in (0,1] and f in N^+. This is the first distributed algorithm for this problem whose running time does not depend on the vertex weights nor the number of vertices. Thus adding another member to the exclusive family of provably optimal distributed algorithms. For constant values of f and epsilon, our algorithm improves over the (f+epsilon)-approximation algorithm of [Fabian Kuhn et al., 2006] whose running time is O(log Delta + log W), where W is the ratio between the largest and smallest vertex weights in the graph. Our algorithm also achieves an f-approximation for the problem in O(f log n) rounds, improving over the classical result of [Samir Khuller et al., 1994] that achieves a running time of O(f log^2 n). Finally, for weighted vertex cover (f=2) our algorithm achieves a deterministic running time of O(log n), matching the randomized previously best result of [Koufogiannakis and Young, 2011]. We also show that integer covering-programs can be reduced to the Minimum Weight Set Cover problem in the distributed setting. This allows us to achieve an (f+epsilon)-approximate integral solution in O((1+f/log n)* ((log Delta)/(log log Delta) + (f * log M)^{1.01}* log epsilon^{-1}* (log Delta)^{0.01})) rounds, where f bounds the number of variables in a constraint, Delta bounds the number of constraints a variable appears in, and M=max {1, ceil[1/a_{min}]}, where a_{min} is the smallest normalized constraint coefficient. This improves over the results of [Fabian Kuhn et al., 2006] for the integral case, which combined with rounding achieves the same guarantees in O(epsilon^{-4}* f^4 * log f * log(M * Delta)) rounds

    Tight Approximation for Partial Vertex Cover with Hard Capacities

    Get PDF
    We consider the partial vertex cover problem with hard capacity constraints (Partial VC-HC) on hypergraphs. In this problem we are given a hypergraph G=(V,E) with a maximum edge size f and a covering requirement R. Each edge is associated with a demand, and each vertex is associated with a capacity and an (integral) available multiplicity. The objective is to compute a minimum vertex multiset such that at least R units of demand from the edges are covered by the capacities of the vertices in the multiset and the multiplicity of each vertex does not exceed its available multiplicity. In this paper we present an f-approximation for this problem, improving over a previous result of (2f+2)(1+epsilon) by Cheung et al to the tight extent possible. Our new ingredient of this work is a generalized analysis on the extreme points of the natural LP, developed from previous works, and a strengthened LP lower-bound obtained for the optimal solutions

    O(f) Bi-Approximation for Capacitated Covering with Hard Capacities

    Get PDF
    We consider capacitated vertex cover with hard capacity constraints (VC-HC) on hypergraphs. In this problem we are given a hypergraph G = (V, E) with a maximum edge size f. Each edge is associated with a demand and each vertex is associated with a weight (cost), a capacity, and an available multiplicity. The objective is to find a minimum-weight vertex multiset such that the demands of the edges can be covered by the capacities of the vertices and the multiplicity of each vertex does not exceed its available multiplicity. In this paper we present an O(f) bi-approximation for VC-HC that gives a trade-off on the number of augmented multiplicity and the cost of the resulting cover. In particular, we show that, by augmenting the available multiplicity by a factor of k geq 2, a cover with a cost ratio of (1+ frac{1}{k - 1})(f - 1) to the optimal cover for the original instance can be obtained. This improves over a previous result, which has a cost ratio of f^2 via augmenting the available multiplicity by a factor of f

    Optimal distributed covering algorithms

    Get PDF
    We present a time-optimal deterministic distributed algorithm for approximating a minimum weight vertex cover in hypergraphs of rank f. This problem is equivalent to the Minimum Weight Set Cover problem in which the frequency of every element is bounded by f. The approximation factor of our algorithm is (f+ε). Let Δ denote the maximum degree in the hypergraph. Our algorithm runs in the CONGEST model and requires O(logΔ/loglogΔ) rounds, for constants ε∈(0,1] and f∈N+. This is the first distributed algorithm for this problem whose running time does not depend on the vertex weights nor the number of vertices. Thus adding another member to the exclusive family of provably optimal distributed algorithms. For constant values of f and ε, our algorithm improves over the (f+ε)-approximation algorithm of Kuhn et al. (SODA, 2006)whose running time is O(logΔ+logW), where W is the ratio between the largest and smallest vertex weights in the graph. Our algorithm also achieves an f-approximation for the problem in O(flogn) rounds, improving over the classical result of Khuller et al. (J Algorithms, 1994) that achieves a running time of O(flog2n). Finally, for weighted vertex cover (f=2) our algorithm achieves a deterministic running time of O(logn), matching the randomized previously best result of Koufogiannakis and Young (Distrib Comput, 2011). We also show that integer covering-programs can be reduced to the Minimum Weight Set Cover problem in the distributed setting. This allows us to achieve an (f⌈log2(M)+1⌉+ε)-approximate integral solution in O((1+f/logn)⋅(logΔloglogΔ+(f⋅logM)1.01⋅logε−1⋅(logΔ)0.01)) rounds, where f bounds the number of variables in a constraint, Δ bounds the number of constraints a variable appears in, and M=max{1,⌈1/amin⌉}, where amin is the smallest normalized constraint coefficient
    • …
    corecore