10,283 research outputs found

    What Are the New Implications of Chaos for Unpredictability?

    Full text link
    From the beginning of chaos research until today, the unpredictability of chaos has been a central theme. It is widely believed and claimed by philosophers, mathematicians and physicists alike that chaos has a new implication for unpredictability, meaning that chaotic systems are unpredictable in a way that other deterministic systems are not. Hence one might expect that the question 'What are the new implications of chaos for unpredictability?' has already been answered in a satisfactory way. However, this is not the case. I will critically evaluate the existing answers and argue that they do not fit the bill. Then I will approach this question by showing that chaos can be defined via mixing, which has not been explicitly argued for. Based on this insight, I will propose that the sought-after new implication of chaos for unpredictability is the following: for predicting any event all sufficiently past events are approximately probabilistically irrelevant

    Information measures and classicality in quantum mechanics

    Full text link
    We study information measures in quantu mechanics, with particular emphasis on providing a quantification of the notions of classicality and predictability. Our primary tool is the Shannon - Wehrl entropy I. We give a precise criterion for phase space classicality and argue that in view of this a) I provides a measure of the degree of deviation from classicality for closed system b) I - S (S the von Neumann entropy) plays the same role in open systems We examine particular examples in non-relativistic quantum mechanics. Finally, (this being one of our main motivations) we comment on field classicalisation on early universe cosmology.Comment: 35 pages, LATE

    Decoherence and classical predictability of phase space histories

    Get PDF
    We consider the decoherence of phase space histories in a class of quantum Brownian motion models, consisting of a particle moving in a potential V(x)V(x) in interaction with a heat bath at temperature TT and dissipation gamma, in the Markovian regime. The evolution of the density operator for this open system is thus described by a non-unitary master equation. The phase space histories of the system are described by a class of quasiprojectors. Generalizing earlier results of Hagedorn and Omn\`es, we show that a phase space projector onto a phase space cell Γ\Gamma is approximately evolved under the master equation into another phase space projector onto the classical dissipative evolution of Γ\Gamma, and with a certain amount of degradation due to the noise produced by the environment. We thus show that histories of phase space samplings approximately decohere, and that the probabilities for these histories are peaked about classical dissipative evolution, with a width of peaking depending on the size of the noise.Comment: 34 pages, LATEX, revised version to avoid LATEX error

    Kernel Analog Forecasting: Multiscale Test Problems

    Get PDF
    Data-driven prediction is becoming increasingly widespread as the volume of data available grows and as algorithmic development matches this growth. The nature of the predictions made, and the manner in which they should be interpreted, depends crucially on the extent to which the variables chosen for prediction are Markovian, or approximately Markovian. Multiscale systems provide a framework in which this issue can be analyzed. In this work kernel analog forecasting methods are studied from the perspective of data generated by multiscale dynamical systems. The problems chosen exhibit a variety of different Markovian closures, using both averaging and homogenization; furthermore, settings where scale-separation is not present and the predicted variables are non-Markovian, are also considered. The studies provide guidance for the interpretation of data-driven prediction methods when used in practice.Comment: 30 pages, 14 figures; clarified several ambiguous parts, added references, and a comparison with Lorenz' original method (Sec. 4.5

    Variational Inference of Disentangled Latent Concepts from Unlabeled Observations

    Full text link
    Disentangled representations, where the higher level data generative factors are reflected in disjoint latent dimensions, offer several benefits such as ease of deriving invariant representations, transferability to other tasks, interpretability, etc. We consider the problem of unsupervised learning of disentangled representations from large pool of unlabeled observations, and propose a variational inference based approach to infer disentangled latent factors. We introduce a regularizer on the expectation of the approximate posterior over observed data that encourages the disentanglement. We also propose a new disentanglement metric which is better aligned with the qualitative disentanglement observed in the decoder's output. We empirically observe significant improvement over existing methods in terms of both disentanglement and data likelihood (reconstruction quality).Comment: ICLR 2018 Versio

    Evaluating the Usability of Automatically Generated Captions for People who are Deaf or Hard of Hearing

    Full text link
    The accuracy of Automated Speech Recognition (ASR) technology has improved, but it is still imperfect in many settings. Researchers who evaluate ASR performance often focus on improving the Word Error Rate (WER) metric, but WER has been found to have little correlation with human-subject performance on many applications. We propose a new captioning-focused evaluation metric that better predicts the impact of ASR recognition errors on the usability of automatically generated captions for people who are Deaf or Hard of Hearing (DHH). Through a user study with 30 DHH users, we compared our new metric with the traditional WER metric on a caption usability evaluation task. In a side-by-side comparison of pairs of ASR text output (with identical WER), the texts preferred by our new metric were preferred by DHH participants. Further, our metric had significantly higher correlation with DHH participants' subjective scores on the usability of a caption, as compared to the correlation between WER metric and participant subjective scores. This new metric could be used to select ASR systems for captioning applications, and it may be a better metric for ASR researchers to consider when optimizing ASR systems.Comment: 10 pages, 8 figures, published in ACM SIGACCESS Conference on Computers and Accessibility (ASSETS '17

    Scheduling of data-intensive workloads in a brokered virtualized environment

    Full text link
    Providing performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, for which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource management solutions that consider the brokered nature of these workloads, as well as the special demands of their intra-dependent components. In this paper, we present an offline mechanism for scheduling batches of brokered data-intensive workloads, which can be extended to an online setting. The objective of the mechanism is to decide on a packing of the workloads in a batch that minimizes the broker's incurred costs, Moreover, considering the brokered nature of such workloads, we define a payment model that provides incentives to these workloads to be scheduled as part of a batch, which we analyze theoretically. Finally, we evaluate the proposed scheduling algorithm, and exemplify the fairness of the payment model in practical settings via trace-based experiments

    Analog Forecasting with Dynamics-Adapted Kernels

    Full text link
    Analog forecasting is a nonparametric technique introduced by Lorenz in 1969 which predicts the evolution of states of a dynamical system (or observables defined on the states) by following the evolution of the sample in a historical record of observations which most closely resembles the current initial data. Here, we introduce a suite of forecasting methods which improve traditional analog forecasting by combining ideas from kernel methods developed in harmonic analysis and machine learning and state-space reconstruction for dynamical systems. A key ingredient of our approach is to replace single-analog forecasting with weighted ensembles of analogs constructed using local similarity kernels. The kernels used here employ a number of dynamics-dependent features designed to improve forecast skill, including Takens' delay-coordinate maps (to recover information in the initial data lost through partial observations) and a directional dependence on the dynamical vector field generating the data. Mathematically, our approach is closely related to kernel methods for out-of-sample extension of functions, and we discuss alternative strategies based on the Nystr\"om method and the multiscale Laplacian pyramids technique. We illustrate these techniques in applications to forecasting in a low-order deterministic model for atmospheric dynamics with chaotic metastability, and interannual-scale forecasting in the North Pacific sector of a comprehensive climate model. We find that forecasts based on kernel-weighted ensembles have significantly higher skill than the conventional approach following a single analog.Comment: submitted to Nonlinearit

    Prediction of invasion from the early stage of an epidemic

    Full text link
    Predictability of undesired events is a question of great interest in many scientific disciplines including seismology, economy, and epidemiology. Here, we focus on the predictability of invasion of a broad class of epidemics caused by diseases that lead to permanent immunity of infected hosts after recovery or death. We approach the problem from the perspective of the science of complexity by proposing and testing several strategies for the estimation of important characteristics of epidemics, such as the probability of invasion. Our results suggest that parsimonious approximate methodologies may lead to the most reliable and robust predictions. The proposed methodologies are first applied to analysis of experimentally observed epidemics: invasion of the fungal plant pathogen \emph{Rhizoctonia solani} in replicated host microcosms. We then consider numerical experiments of the SIR (susceptible-infected-removed) model to investigate the performance of the proposed methods in further detail. The suggested framework can be used as a valuable tool for quick assessment of epidemic threat at the stage when epidemics only start developing. Moreover, our work amplifies the significance of the small-scale and finite-time microcosm realizations of epidemics revealing their predictive power.Comment: Main text: 18 pages, 7 figures. Supporting information: 21 pages, 8 figure

    On the selection of preferred consistent sets

    Get PDF
    The theme of this paper is the multiplicity of the consistent sets appearing in the consistent histories approach to quantum mechanics. We propose one criterion for choosing preferred families among them: that the physically realizable quasiclassical domain ought to be one corresponding to classical histories. We examine the way classical mechanics arises as a particular window and the important role played by the canonical group and the Hamiltonian. We finally discuss possible implications of our having a selection criterion generally and of our criterion in particular.Comment: 14 page
    • …
    corecore