446 research outputs found

    Random Weighting, Asymptotic Counting, and Inverse Isoperimetry

    Full text link
    For a family X of k-subsets of the set 1,...,n, let |X| be the cardinality of X and let Gamma(X,mu) be the expected maximum weight of a subset from X when the weights of 1,...,n are chosen independently at random from a symmetric probability distribution mu on R. We consider the inverse isoperimetric problem of finding mu for which Gamma(X,mu) gives the best estimate of ln|X|. We prove that the optimal choice of mu is the logistic distribution, in which case Gamma(X,mu) provides an asymptotically tight estimate of ln|X| as k^{-1}ln|X| grows. Since in many important cases Gamma(X,mu) can be easily computed, we obtain computationally efficient approximation algorithms for a variety of counting problems. Given mu, we describe families X of a given cardinality with the minimum value of Gamma(X,mu), thus extending and sharpening various isoperimetric inequalities in the Boolean cube.Comment: The revision contains a new isoperimetric theorem, some other improvements and extensions; 29 pages, 1 figur

    Quantum ground state isoperimetric inequalities for the energy spectrum of local Hamiltonians

    Get PDF
    We investigate the relationship between the energy spectrum of a local Hamiltonian and the geometric properties of its ground state. By generalizing a standard framework from the analysis of Markov chains to arbitrary (non-stoquastic) Hamiltonians we are naturally led to see that the spectral gap can always be upper bounded by an isoperimetric ratio that depends only on the ground state probability distribution and the range of the terms in the Hamiltonian, but not on any other details of the interaction couplings. This means that for a given probability distribution the inequality constrains the spectral gap of any local Hamiltonian with this distribution as its ground state probability distribution in some basis (Eldar and Harrow derived a similar result in order to characterize the output of low-depth quantum circuits). Going further, we relate the Hilbert space localization properties of the ground state to higher energy eigenvalues by showing that the presence of k strongly localized ground state modes (i.e. clusters of probability, or subsets with small expansion) in Hilbert space implies the presence of k energy eigenvalues that are close to the ground state energy. Our results suggest that quantum adiabatic optimization using local Hamiltonians will inevitably encounter small spectral gaps when attempting to prepare ground states corresponding to multi-modal probability distributions with strongly localized modes, and this problem cannot necessarily be alleviated with the inclusion of non-stoquastic couplings

    Tighter Relations Between Sensitivity and Other Complexity Measures

    Full text link
    Sensitivity conjecture is a longstanding and fundamental open problem in the area of complexity measures of Boolean functions and decision tree complexity. The conjecture postulates that the maximum sensitivity of a Boolean function is polynomially related to other major complexity measures. Despite much attention to the problem and major advances in analysis of Boolean functions in the past decade, the problem remains wide open with no positive result toward the conjecture since the work of Kenyon and Kutin from 2004. In this work, we present new upper bounds for various complexity measures in terms of sensitivity improving the bounds provided by Kenyon and Kutin. Specifically, we show that deg(f)^{1-o(1)}=O(2^{s(f)}) and C(f) < 2^{s(f)-1} s(f); these in turn imply various corollaries regarding the relation between sensitivity and other complexity measures, such as block sensitivity, via known results. The gap between sensitivity and other complexity measures remains exponential but these results are the first improvement for this difficult problem that has been achieved in a decade.Comment: This is the merged form of arXiv submission 1306.4466 with another work. Appeared in ICALP 2014, 14 page
    corecore