70,875 research outputs found

    Computer algebra tools for Feynman integrals and related multi-sums

    Full text link
    In perturbative calculations, e.g., in the setting of Quantum Chromodynamics (QCD) one aims at the evaluation of Feynman integrals. Here one is often faced with the problem to simplify multiple nested integrals or sums to expressions in terms of indefinite nested integrals or sums. Furthermore, one seeks for solutions of coupled systems of linear differential equations, that can be represented in terms of indefinite nested sums (or integrals). In this article we elaborate the main tools and the corresponding packages, that we have developed and intensively used within the last 10 years in the course of our QCD-calculations

    Refined Holonomic Summation Algorithms in Particle Physics

    Full text link
    An improved multi-summation approach is introduced and discussed that enables one to simultaneously handle indefinite nested sums and products in the setting of difference rings and holonomic sequences. Relevant mathematics is reviewed and the underlying advanced difference ring machinery is elaborated upon. The flexibility of this new toolbox contributed substantially to evaluating complicated multi-sums coming from particle physics. Illustrative examples of the functionality of the new software package RhoSum are given.Comment: Modified Proposition 2.1 and Corollary 2.

    Nested (inverse) binomial sums and new iterated integrals for massive Feynman diagrams

    Full text link
    Nested sums containing binomial coefficients occur in the computation of massive operator matrix elements. Their associated iterated integrals lead to alphabets including radicals, for which we determined a suitable basis. We discuss algorithms for converting between sum and integral representations, mainly relying on the Mellin transform. To aid the conversion we worked out dedicated rewrite rules, based on which also some general patterns emerging in the process can be obtained.Comment: 13 pages LATEX, one style file, Proceedings of Loops and Legs in Quantum Field Theory -- LL2014,27 April 2014 -- 02 May 2014 Weimar, German

    Optimal Summation and Integration by Deterministic, Randomized, and Quantum Algorithms

    Get PDF
    We survey old and new results about optimal algorithms for summation of finite sequences and for integration of functions from Hoelder or Sobolev spaces. First we discuss optimal deterministic and randomized algorithms. Then we add a new aspect, which has not been covered before on conferences about (quasi-) Monte Carlo methods: quantum computation. We give a short introduction into this setting and present recent results of the authors on optimal quantum algorithms for summation and integration. We discuss comparisons between the three settings. The most interesting case for Monte Carlo and quantum integration is that of moderate smoothness k and large dimension d which, in fact, occurs in a number of important applied problems. In that case the deterministic exponent is negligible, so the n^{-1/2} Monte Carlo and the n^{-1} quantum speedup essentially constitute the entire convergence rate. We observe that -- there is an exponential speed-up of quantum algorithms over deterministic (classical) algorithms, if k/d tends to zero; -- there is a (roughly) quadratic speed-up of quantum algorithms over randomized classical algorithms, if k/d is small.Comment: 13 pages, contribution to the 4th International Conference on Monte Carlo and Quasi-Monte Carlo Methods, Hong Kong 200

    A toolbox to solve coupled systems of differential and difference equations

    Full text link
    We present algorithms to solve coupled systems of linear differential equations, arising in the calculation of massive Feynman diagrams with local operator insertions at 3-loop order, which do {\it not} request special choices of bases. Here we assume that the desired solution has a power series representation and we seek for the coefficients in closed form. In particular, if the coefficients depend on a small parameter \ep (the dimensional parameter), we assume that the coefficients themselves can be expanded in formal Laurent series w.r.t.\ \ep and we try to compute the first terms in closed form. More precisely, we have a decision algorithm which solves the following problem: if the terms can be represented by an indefinite nested hypergeometric sum expression (covering as special cases the harmonic sums, cyclotomic sums, generalized harmonic sums or nested binomial sums), then we can calculate them. If the algorithm fails, we obtain a proof that the terms cannot be represented by the class of indefinite nested hypergeometric sum expressions. Internally, this problem is reduced by holonomic closure properties to solving a coupled system of linear difference equations. The underlying method in this setting relies on decoupling algorithms, difference ring algorithms and recurrence solving. We demonstrate by a concrete example how this algorithm can be applied with the new Mathematica package \texttt{SolveCoupledSystem} which is based on the packages \texttt{Sigma}, \texttt{HarmonicSums} and \texttt{OreSys}. In all applications the representation in xx-space is obtained as an iterated integral representation over general alphabets, generalizing Poincar\'{e} iterated integrals

    - XSummer - Transcendental Functions and Symbolic Summation in Form

    Full text link
    Harmonic sums and their generalizations are extremely useful in the evaluation of higher-order perturbative corrections in quantum field theory. Of particular interest have been the so-called nested sums,where the harmonic sums and their generalizations appear as building blocks, originating for example from the expansion of generalized hypergeometric functions around integer values of the parameters. In this Letter we discuss the implementation of several algorithms to solve these sums by algebraic means, using the computer algebra system Form.Comment: 21 pages, 1 figure, Late

    Algorithms to Evaluate Multiple Sums for Loop Computations

    Full text link
    We present algorithms to evaluate two types of multiple sums, which appear in higher-order loop computations. We consider expansions of a generalized hypergeometric-type sums, \sum_{n_1,...,n_N} [Gamma(a1.n+c1) Gamma(a2.n}+c2) ... Gamma(aM.n+cM)] / [Gamma(b1.n+d1) Gamma(b2.n+d2) ... Gamma(bM.n+dM)] x1^n1...xN^nN with ai.n=j=1Naijnjai.n=\sum_{j=1}^N a_{ij}nj, etc., in a small parameter epsilon around rational values of ci,di's. Type I sum corresponds to the case where, in the limit epsilon -> 0, the summand reduces to a rational function of nj's times x1^n1...xN^nN; ci,di's can depend on an external integer index. Type II sum is a double sum (N=2), where ci,di's are half-integers or integers as epsilon -> 0 and xi=1; we consider some specific cases where at most six Gamma functions remain in the limit epsilon -> 0. The algorithms enable evaluations of arbitrary expansion coefficients in epsilon in terms of Z-sums and multiple polylogarithms (generalized multiple zeta values). We also present applications of these algorithms. In particular, Type I sums can be used to generate a new class of relations among generalized multiple zeta values. We provide a Mathematica package, in which these algorithms are implemented.Comment: 30 pages, 2 figures; address of Mathematica package in Sec.6; version to appear in J.Math.Phy
    corecore