2,836 research outputs found

    Deterministic Sampling and Range Counting in Geometric Data Streams

    Get PDF
    We present memory-efficient deterministic algorithms for constructing epsilon-nets and epsilon-approximations of streams of geometric data. Unlike probabilistic approaches, these deterministic samples provide guaranteed bounds on their approximation factors. We show how our deterministic samples can be used to answer approximate online iceberg geometric queries on data streams. We use these techniques to approximate several robust statistics of geometric data streams, including Tukey depth, simplicial depth, regression depth, the Thiel-Sen estimator, and the least median of squares. Our algorithms use only a polylogarithmic amount of memory, provided the desired approximation factors are inverse-polylogarithmic. We also include a lower bound for non-iceberg geometric queries.Comment: 12 pages, 1 figur

    A new quantum computational set-up for algebraic topology via simplicial sets

    Full text link
    In this paper, we lay down the foundation of a quantum computational framework for algebraic topology based on simplicial set theory. This extends previous work, which was limited to simplicial complexes and aimed mostly to topological data analysis. Our set--up applies to any parafinite simplicial set and proceeds by associating with it a finite dimensional simplicial Hilbert space, whose simplicial operator structure we study in depth. We show in particular how the problem of determining the simplicial set's homology can be solved within the simplicial Hilbert framework. We examine further the conditions under which simplicial set theoretic algorithms can be implemented in a quantum computational setting taking into account a quantum computer's finite resources. We outline finally a quantum algorithmic scheme capable to compute the simplicial homology spaces and Betti numbers of a simplicial set combining a number of basic quantum algorithms.Comment: 77 pages, no figure

    Algorithms for Colourful Simplicial Depth and Medians in the Plane

    Full text link
    The colourful simplicial depth of a point x in the plane relative to a configuration of n points in k colour classes is exactly the number of closed simplices (triangles) with vertices from 3 different colour classes that contain x in their convex hull. We consider the problems of efficiently computing the colourful simplicial depth of a point x, and of finding a point, called a median, that maximizes colourful simplicial depth. For computing the colourful simplicial depth of x, our algorithm runs in time O(n log(n) + k n) in general, and O(kn) if the points are sorted around x. For finding the colourful median, we get a time of O(n^4). For comparison, the running times of the best known algorithm for the monochrome version of these problems are O(n log(n)) in general, improving to O(n) if the points are sorted around x for monochrome depth, and O(n^4) for finding a monochrome median.Comment: 17 pages, 8 figure

    Colourful Simplicial Depth

    Full text link
    Inspired by Barany's colourful Caratheodory theorem, we introduce a colourful generalization of Liu's simplicial depth. We prove a parity property and conjecture that the minimum colourful simplicial depth of any core point in any d-dimensional configuration is d^2+1 and that the maximum is d^(d+1)+1. We exhibit configurations attaining each of these depths and apply our results to the problem of bounding monochrome (non-colourful) simplicial depth.Comment: 18 pages, 5 figues. Minor polishin

    A primal Barvinok algorithm based on irrational decompositions

    Full text link
    We introduce variants of Barvinok's algorithm for counting lattice points in polyhedra. The new algorithms are based on irrational signed decomposition in the primal space and the construction of rational generating functions for cones with low index. We give computational results that show that the new algorithms are faster than the existing algorithms by a large factor.Comment: v3: New all-primal algorithm. v4: Extended introduction, updated computational results. To appear in SIAM Journal on Discrete Mathematic

    Sparse Nerves in Practice

    Get PDF
    Topological data analysis combines machine learning with methods from algebraic topology. Persistent homology, a method to characterize topological features occurring in data at multiple scales is of particular interest. A major obstacle to the wide-spread use of persistent homology is its computational complexity. In order to be able to calculate persistent homology of large datasets, a number of approximations can be applied in order to reduce its complexity. We propose algorithms for calculation of approximate sparse nerves for classes of Dowker dissimilarities including all finite Dowker dissimilarities and Dowker dissimilarities whose homology is Cech persistent homology. All other sparsification methods and software packages that we are aware of calculate persistent homology with either an additive or a multiplicative interleaving. In dowker_homology, we allow for any non-decreasing interleaving function α\alpha. We analyze the computational complexity of the algorithms and present some benchmarks. For Euclidean data in dimensions larger than three, the sizes of simplicial complexes we create are in general smaller than the ones created by SimBa. Especially when calculating persistent homology in higher homology dimensions, the differences can become substantial

    Computing Optimal Morse Matchings

    Full text link
    Morse matchings capture the essential structural information of discrete Morse functions. We show that computing optimal Morse matchings is NP-hard and give an integer programming formulation for the problem. Then we present polyhedral results for the corresponding polytope and report on computational results
    • …
    corecore