1,755 research outputs found

    Variety of stylolites morphologies and statistical characterization of the amount of heterogeneities in the rock

    Get PDF
    The surface roughness of several stylolites in limestones was measured using high resolution laser profilometry. The 1D signals obtained were statistically analyzed to determine the scaling behavior and calculate a roughness exponent, also called Hurst exponent. Statistical methods based on the characterization of a single Hurst exponent imply strong assumptions on the mathematical characteristics of the signal: the derivative of the signal (or local increments) should be stationary and have finite variance. The analysis of the measured stylolites show that these properties are not always verified simultaneously. The stylolite profiles show persistence and jumps and several stylolites are not regular, with alternating regular and irregular portions. A new statistical method is proposed here, based on a non-stationary but Gaussian model, to estimate the roughness of the profiles and quantify the heterogeneity of stylolites. This statistical method is based on two parameters: the local roughness (H) which describes the local amplitude of the stylolite, and the amount of irregularities on the signal (\mu), which can be linked to the heterogeneities initially present in the rock before the stylolite formed. Using this technique, a classification of the stylolites in two families is proposed: those for which the morphology is homogeneous everywhere and those with alternating regular and irregular portions

    Stress partitioning in a near-β Titanium alloy induced by elastic and plastic phase anisotropies: experimental and modeling

    Get PDF
    International audienceThe load transfer induced by the elas c and plas c phase anisotropies of a Ti-10V-2Fe-3Al tanium alloy is studied. The microstructure consists in α nodules embedded in elongated β grains. EBSD performed on the alloy shows no crystallographic texture neither for α nor β phase. Tensile tests along the elonga on direc on, at a strain rate of 2 x 10-3 s-1 give a yield stress of 830 MPa with 13% duc lity. Simula ons based on an advanced two-phase polycrystalline elasto-viscoplas c self-consistent (EVPSC) model predict that the β phase first plas fies with a sequen al onset of plas city star ng from oriented β grains, then and finally oriented β grains. This leads to a strong load transfer from the β grains to the α nodules whose average behavior remains elas c up to high stresses (~940 MPa). However, addi onal simula ons considering exclusively β grains of specific orienta on show that the behavior of α nodules is strongly dependent on the β texture in which they are embedded. Especially, in β grains, which plas fy the latest, the model predicts the onset of plas city in favorably orientated α nodules. Moreover, the orienta on spread within the β grains can modify the average plas c behavior of α phase. In future, these results will be compared to data obtained from in-situ High Energy XRD and SEM/EBSD experiments

    Micromechanical modeling of the effect of elastic and plastic anisotropies on the mechanical behavior of β-Ti alloys

    Get PDF
    International audienceNear β-titanium alloys like Ti-5553 or Ti-1023 often exhibit bimodal phase constituents embedded in a retained β-phase matrix, which represents up to 40% of the volume. The highly elastic anisotropic β-phase may strongly influence the mechanical behavior of these alloys. The present work models the effect of the coupled role of β-phase elastic and plastic anisotropies on the local and overall responses of a fully β-phase polycrystalline aggregate like the Ti-17 alloy. The model is based on an advanced elasto-viscoplastic self-consistent (EVPSC) homogenization scheme solved by the "translated field" method together with an affine linearization of the viscoplastic flow rule. The effects of elastic anisotropy, crystallographic texture and grain morphology are theoretically studied during uniaxial tensile tests, tension-compression tests as well as multiaxial plastic yielding. First, it is shown that different sets of elastic constants taken from literature give rise to similar effective responses but to widely scattered incompatibility stresses. During uniaxial tensile loading, the highest local incompatibility stresses are achieved in oriented grains at the end of the elastic regime. Likewise, the effect of the β-grain morphology for realistic grain aspect ratios is seen to be weak on the overall behavior but strong on incompatibility stresses. In addition, the elastic anisotropy can have a significant influence on yield surfaces for β-forged textured polycrystals. Finally, the simulated Bauschinger stress monotonically increases with the elastic anisotropy coefficient for a random texture while it may be reduced in case of β-forged texture due to a competition between elastic and plastic sources of incompatibility stresses

    Pollen Morphology of Rapateaceae

    Get PDF
    corecore