3,731 research outputs found

    Continuous-time mean-variance efficiency: the 80% rule

    Full text link
    This paper studies a continuous-time market where an agent, having specified an investment horizon and a targeted terminal mean return, seeks to minimize the variance of the return. The optimal portfolio of such a problem is called mean-variance efficient \`{a} la Markowitz. It is shown that, when the market coefficients are deterministic functions of time, a mean-variance efficient portfolio realizes the (discounted) targeted return on or before the terminal date with a probability greater than 0.8072. This number is universal irrespective of the market parameters, the targeted return and the length of the investment horizon.Comment: Published at http://dx.doi.org/10.1214/105051606000000349 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Continuous-Time Markowitz's Model with Transaction Costs

    Full text link
    A continuous-time Markowitz's mean-variance portfolio selection problem is studied in a market with one stock, one bond, and proportional transaction costs. This is a singular stochastic control problem,inherently in a finite time horizon. With a series of transformations, the problem is turned into a so-called double obstacle problem, a well studied problem in physics and partial differential equation literature, featuring two time-varying free boundaries. The two boundaries, which define the buy, sell, and no-trade regions, are proved to be smooth in time. This in turn characterizes the optimal strategy, via a Skorokhod problem, as one that tries to keep a certain adjusted bond-stock position within the no-trade region. Several features of the optimal strategy are revealed that are remarkably different from its no-transaction-cost counterpart. It is shown that there exists a critical length in time, which is dependent on the stock excess return as well as the transaction fees but independent of the investment target and the stock volatility, so that an expected terminal return may not be achievable if the planning horizon is shorter than that critical length (while in the absence of transaction costs any expected return can be reached in an arbitrary period of time). It is further demonstrated that anyone following the optimal strategy should not buy the stock beyond the point when the time to maturity is shorter than the aforementioned critical length. Moreover, the investor would be less likely to buy the stock and more likely to sell the stock when the maturity date is getting closer. These features, while consistent with the widely accepted investment wisdom, suggest that the planning horizon is an integral part of the investment opportunities.Comment: 30 pages, 1 figur

    Continuous time mean-variance portfolio selection with nonlinear wealth equations and random coefficients

    Full text link
    This paper concerns the continuous time mean-variance portfolio selection problem with a special nonlinear wealth equation. This nonlinear wealth equation has nonsmooth random coefficients and the dual method developed in [7] does not work. To apply the completion of squares technique, we introduce two Riccati equations to cope with the positive and negative part of the wealth process separately. We obtain the efficient portfolio strategy and efficient frontier for this problem. Finally, we find the appropriate sub-derivative claimed in [7] using convex duality method.Comment: arXiv admin note: text overlap with arXiv:1606.0548
    • …
    corecore