5,179 research outputs found

    Consistency test and weight generation for additive interval fuzzy preference relations

    Get PDF
    Some simple yet pragmatic methods of consistency test are developed to check whether an interval fuzzy preference relation is consistent. Based on the definition of additive consistent fuzzy preference relations proposed by Tanino (Fuzzy Sets Syst 12:117–131, 1984), a study is carried out to examine the correspondence between the element and weight vector of a fuzzy preference relation. Then, a revised approach is proposed to obtain priority weights from a fuzzy preference relation. A revised definition is put forward for additive consistent interval fuzzy preference relations. Subsequently, linear programming models are established to generate interval priority weights for additive interval fuzzy preference relations. A practical procedure is proposed to solve group decision problems with additive interval fuzzy preference relations. Theoretic analysis and numerical examples demonstrate that the proposed methods are more accurate than those in Xu and Chen (Eur J Oper Res 184:266–280, 2008b)

    Goal programming approaches to deriving interval fuzzy preference relations

    Get PDF
    This article investigates the consistency of interval fuzzy preference relations based on interval arithmetic, and new definitions are introduced for additive consistent, multiplicative consistent and weakly transitive interval fuzzy preference relations. Transformation functions are put forward to convert normalized interval weights into consistent interval fuzzy preference relations. By analyzing the relationship between interval weights and consistent interval fuzzy preference relations, goal-programming-based models are developed for deriving interval weights from interval fuzzy preference relations for both individual and group decision-making situations. The proposed models are illustrated by a numerical example and an international exchange doctoral student selection problem

    Incomplete interval fuzzy preference relations and their applications

    Get PDF
    This paper investigates incomplete interval fuzzy preference relations. A characterization, which is proposed by Herrera-Viedma et al. (2004), of the additive consistency property of the fuzzy preference relations is extended to a more general case. This property is further generalized to interval fuzzy preference relations (IFPRs) based on additive transitivity. Subsequently, we examine how to characterize IFPR. Using these new characterizations, we propose a method to construct an additive consistent IFPR from a set of n − 1 preference data and an estimation algorithm for acceptable incomplete IFPRs with more known elements. Numerical examples are provided to illustrate the effectiveness and practicality of the solution process

    On the normalization of a priority vector associated with a reciprocal relation.

    Get PDF
    In this paper we show that the widely used normalization constraint SUM(i=1,n) wi = 1 does not apply to the priority vectors associated with reciprocal relations, whenever additive transitivity is involved. We show that misleading applications of this type of normalization may lead to unsatisfactory results and we give some examples from the literature. Then, we propose an alternative normalization procedure which is compatible with additive transitivity and leads to better results.reciprocal relation; fuzzy preference relation; priority vector; normalization

    A general unified framework for pairwise comparison matrices in multicriterial methods

    Get PDF
    In a Multicriteria Decision Making context, a pairwise comparison matrix A=(aij)A=(a_{ij}) is a helpful tool to determine the weighted ranking on a set XX of alternatives or criteria. The entry aija_{ij} of the matrix can assume different meanings: aija_{ij} can be a preference ratio (multiplicative case) or a preference difference (additive case) or aija_{ij} belongs to [0,1][0,1] and measures the distance from the indifference that is expressed by 0.5 (fuzzy case). For the multiplicative case, a consistency index for the matrix AA has been provided by T.L. Saaty in terms of maximum eigenvalue. We consider pairwise comparison matrices over an abelian linearly ordered group and, in this way, we provide a general framework including the mentioned cases. By introducing a more general notion of metric, we provide a consistency index that has a natural meaning and it is easy to compute in the additive and multiplicative cases; in the other cases, it can be computed easily starting from a suitable additive or multiplicative matrix

    Algorithms to Detect and Rectify Multiplicative and Ordinal Inconsistencies of Fuzzy Preference Relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Consistency, multiplicative and ordinal, of fuzzy preference relations (FPRs) is investigated. The geometric consistency index (GCI) approximated thresholds are extended to measure the degree of consistency for an FPR. For inconsistent FPRs, two algorithms are devised (1) to find the multiplicative inconsistent elements, and (2) to detect the ordinal inconsistent elements. An integrated algorithm is proposed to improve simultaneously the ordinal and multiplicative consistencies. Some examples, comparative analysis, and simulation experiments are provided to demonstrate the effectiveness of the proposed methods

    On the priority vector associated with a fuzzy preference relation and a multiplicative preference relation.

    Get PDF
    We propose two straightforward methods for deriving the priority vector associated with a fuzzy preference relation. Then, using transformations between multiplicative preference relations and fuzzy preference relations, we study the relationships between the priority vectors associated with these two types of preference relations.pairwise comparison matrix; fuzzy preference relation; priority vector

    Incomplete pairwise comparison and consistency optimization

    Get PDF
    This paper proposes a new method for calculating the missing elements of an incomplete matrix of pairwise comparison values for a decision problem. The matrix is completed by minimizing a measure of global inconsistency, thus obtaining a matrix which is optimal from the point of view of consistency with respect to the available judgements. The optimal values are obtained by solving a linear system and unicity of the solution is proved under general assumptions. Some other methods proposed in the literature are discussed and a numerical example is presented.consistency, pairwise comparison matrices
    • 

    corecore