550 research outputs found

    Partial containment control over signed graphs

    Get PDF
    In this paper, we deal with the containment control problem in presence of antagonistic interactions. In particular, we focus on the cases in which it is not possible to contain the entire network due to a constrained number of control signals. In this scenario, we study the problem of selecting the nodes where control signals have to be injected to maximize the number of contained nodes. Leveraging graph condensations, we find a suboptimal and computationally efficient solution to this problem, which can be implemented by solving an integer linear problem. The effectiveness of the selection strategy is illustrated through representative simulations.Comment: 6 pages, 3 figures, accepted for presentation at the 2019 European Control Conference (ECC19), Naples, Ital

    Guaranteed Cost Tracking for Uncertain Coupled Multi-agent Systems Using Consensus over a Directed Graph

    Full text link
    This paper considers the leader-follower control problem for a linear multi-agent system with directed communication topology and linear nonidentical uncertain coupling subject to integral quadratic constraints (IQCs). A consensus-type control protocol is proposed based on each agent's states relative to its neighbors and leader's state relative to agents which observe the leader. A sufficient condition is obtained by overbounding the cost function. Based on this sufficient condition, a computational algorithm is introduced to minimize the proposed guaranteed bound on tracking performance, which yields a suboptimal bound on the system consensus control and tracking performance. The effectiveness of the proposed method is demonstrated using a simulation example.Comment: Accepted for presentation at the 2013 Australian Control conferenc
    • …
    corecore