4,900 research outputs found

    The spectral analysis of nonstationary categorical time series using local spectral envelope

    Get PDF
    Most classical methods for the spectral analysis are based on the assumption that the time series is stationary. However, many time series in practical problems shows nonstationary behaviors. The data from some fields are huge and have variance and spectrum which changes over time. Sometimes,we are interested in the cyclic behavior of the categorical-valued time series such as EEG sleep state data or DNA sequence, the general method is to scale the data, that is, assign numerical values to the categories and then use the periodogram to find the cyclic behavior. But there exists numerous possible scaling. If we arbitrarily assign the numerical values to the categories and proceed with a spectral analysis, then the results will depend on the particular assignment. We would like to find the all possible scaling that bring out all of the interesting features in the data. To overcome these problems, there have been many approaches in the spectral analysis. Our goal is to develop a statistical methodology for analyzing nonstationary categorical time series in the frequency domain. In this dissertation, the spectral envelope methodology is introduced for spectral analysis of categorical time series. This provides the general framework for the spectral analysis of the categorical time series and summarizes information from the spectrum matrix. To apply this method to nonstationary process, I used the TBAS(Tree-Based Adaptive Segmentation) and local spectral envelope based on the piecewise stationary process. In this dissertation,the TBAS(Tree-Based Adpative Segmentation) using distance function based on the Kullback-Leibler divergence was proposed to find the best segmentation

    On Locally Dyadic Stationary Processes

    Full text link
    We introduce the concept of local dyadic stationarity, to account for non-stationary time series, within the framework of Walsh-Fourier analysis. We define and study the time varying dyadic ARMA models (tvDARMA). It is proven that the general tvDARMA process can be approximated locally by either a tvDMA and a tvDAR process.Comment: 27 pages, 2 figure

    Time-frequency analysis of locally stationary Hawkes processes

    Full text link
    Locally stationary Hawkes processes have been introduced in order to generalise classical Hawkes processes away from stationarity by allowing for a time-varying second-order structure. This class of self-exciting point processes has recently attracted a lot of interest in applications in the life sciences (seismology, genomics, neuro-science,...), but also in the modelling of high-frequency financial data. In this contribution we provide a fully developed nonparametric estimation theory of both local mean density and local Bartlett spectra of a locally stationary Hawkes process. In particular we apply our kernel estimation of the spectrum localised both in time and frequency to two data sets of transaction times revealing pertinent features in the data that had not been made visible by classical non-localised approaches based on models with constant fertility functions over time.Comment: Bernoulli journal, A Para{\^i}tr

    Covariance matrix estimation for stationary time series

    Full text link
    We obtain a sharp convergence rate for banded covariance matrix estimates of stationary processes. A precise order of magnitude is derived for spectral radius of sample covariance matrices. We also consider a thresholded covariance matrix estimator that can better characterize sparsity if the true covariance matrix is sparse. As our main tool, we implement Toeplitz [Math. Ann. 70 (1911) 351-376] idea and relate eigenvalues of covariance matrices to the spectral densities or Fourier transforms of the covariances. We develop a large deviation result for quadratic forms of stationary processes using m-dependence approximation, under the framework of causal representation and physical dependence measures.Comment: Published in at http://dx.doi.org/10.1214/11-AOS967 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore