254 research outputs found

    Acyclic edge coloring of graphs

    Full text link
    An {\em acyclic edge coloring} of a graph GG is a proper edge coloring such that the subgraph induced by any two color classes is a linear forest (an acyclic graph with maximum degree at most two). The {\em acyclic chromatic index} \chiup_{a}'(G) of a graph GG is the least number of colors needed in an acyclic edge coloring of GG. Fiam\v{c}\'{i}k (1978) conjectured that \chiup_{a}'(G) \leq \Delta(G) + 2, where Δ(G)\Delta(G) is the maximum degree of GG. This conjecture is well known as Acyclic Edge Coloring Conjecture (AECC). A graph GG with maximum degree at most κ\kappa is {\em κ\kappa-deletion-minimal} if \chiup_{a}'(G) > \kappa and \chiup_{a}'(H) \leq \kappa for every proper subgraph HH of GG. The purpose of this paper is to provide many structural lemmas on κ\kappa-deletion-minimal graphs. By using the structural lemmas, we firstly prove that AECC is true for the graphs with maximum average degree less than four (\autoref{NMAD4}). We secondly prove that AECC is true for the planar graphs without triangles adjacent to cycles of length at most four, with an additional condition that every 55-cycle has at most three edges contained in triangles (\autoref{NoAdjacent}), from which we can conclude some known results as corollaries. We thirdly prove that every planar graph GG without intersecting triangles satisfies \chiup_{a}'(G) \leq \Delta(G) + 3 (\autoref{NoIntersect}). Finally, we consider one extreme case and prove it: if GG is a graph with Δ(G)3\Delta(G) \geq 3 and all the 3+3^{+}-vertices are independent, then \chiup_{a}'(G) = \Delta(G). We hope the structural lemmas will shed some light on the acyclic edge coloring problems.Comment: 19 page

    Vertex Arboricity of Toroidal Graphs with a Forbidden Cycle

    Full text link
    The vertex arboricity a(G)a(G) of a graph GG is the minimum kk such that V(G)V(G) can be partitioned into kk sets where each set induces a forest. For a planar graph GG, it is known that a(G)3a(G)\leq 3. In two recent papers, it was proved that planar graphs without kk-cycles for some k{3,4,5,6,7}k\in\{3, 4, 5, 6, 7\} have vertex arboricity at most 2. For a toroidal graph GG, it is known that a(G)4a(G)\leq 4. Let us consider the following question: do toroidal graphs without kk-cycles have vertex arboricity at most 2? It was known that the question is true for k=3, and recently, Zhang proved the question is true for k=5k=5. Since a complete graph on 5 vertices is a toroidal graph without any kk-cycles for k6k\geq 6 and has vertex arboricity at least three, the only unknown case was k=4. We solve this case in the affirmative; namely, we show that toroidal graphs without 4-cycles have vertex arboricity at most 2.Comment: 8 pages, 2 figure

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure

    Obstacle Numbers of Planar Graphs

    Full text link
    Given finitely many connected polygonal obstacles O1,,OkO_1,\dots,O_k in the plane and a set PP of points in general position and not in any obstacle, the {\em visibility graph} of PP with obstacles O1,,OkO_1,\dots,O_k is the (geometric) graph with vertex set PP, where two vertices are adjacent if the straight line segment joining them intersects no obstacle. The obstacle number of a graph GG is the smallest integer kk such that GG is the visibility graph of a set of points with kk obstacles. If GG is planar, we define the planar obstacle number of GG by further requiring that the visibility graph has no crossing edges (hence that it is a planar geometric drawing of GG). In this paper, we prove that the maximum planar obstacle number of a planar graph of order nn is n3n-3, the maximum being attained (in particular) by maximal bipartite planar graphs. This displays a significant difference with the standard obstacle number, as we prove that the obstacle number of every bipartite planar graph (and more generally in the class PURE-2-DIR of intersection graphs of straight line segments in two directions) of order at least 33 is 11.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Box representations of embedded graphs

    Full text link
    A dd-box is the cartesian product of dd intervals of R\mathbb{R} and a dd-box representation of a graph GG is a representation of GG as the intersection graph of a set of dd-boxes in Rd\mathbb{R}^d. It was proved by Thomassen in 1986 that every planar graph has a 3-box representation. In this paper we prove that every graph embedded in a fixed orientable surface, without short non-contractible cycles, has a 5-box representation. This directly implies that there is a function ff, such that in every graph of genus gg, a set of at most f(g)f(g) vertices can be removed so that the resulting graph has a 5-box representation. We show that such a function ff can be made linear in gg. Finally, we prove that for any proper minor-closed class F\mathcal{F}, there is a constant c(F)c(\mathcal{F}) such that every graph of F\mathcal{F} without cycles of length less than c(F)c(\mathcal{F}) has a 3-box representation, which is best possible.Comment: 16 pages, 6 figures - revised versio

    Acyclic 4-choosability of planar graphs without 4-cycles

    Get PDF
    summary:A proper vertex coloring of a graph GG is acyclic if there is no bicolored cycle in GG. In other words, each cycle of GG must be colored with at least three colors. Given a list assignment L={L(v) ⁣:vV}L=\{L(v)\colon v\in V\}, if there exists an acyclic coloring π\pi of GG such that π(v)L(v)\pi (v)\in L(v) for all vVv\in V, then we say that GG is acyclically LL-colorable. If GG is acyclically LL-colorable for any list assignment LL with L(v)k|L(v)|\ge k for all vVv\in V, then GG is acyclically kk-choosable. In 2006, Montassier, Raspaud and Wang conjectured that every planar graph without 4-cycles is acyclically 4-choosable. However, this has been as yet verified only for some restricted classes of planar graphs. In this paper, we prove that every planar graph with neither 4-cycles nor intersecting ii-cycles for each i{3,5}i\in \{3,5\} is acyclically 4-choosable

    A spanning tree model for the Heegaard Floer homology of a branched double-cover

    Full text link
    Given a diagram of a link K in S^3, we write down a Heegaard diagram for the branched-double cover Sigma(K). The generators of the associated Heegaard Floer chain complex correspond to Kauffman states of the link diagram. Using this model we make some computations of the homology \hat{HF}(Sigma(K)) as a graded group. We also conjecture the existence of a delta-grading on \hat{HF}(Sigma(K)) analogous to the delta-grading on knot Floer and Khovanov homology.Comment: 43 pages, 20 figure
    corecore