289 research outputs found

    Network Coding in a Multicast Switch

    Full text link
    We consider the problem of serving multicast flows in a crossbar switch. We show that linear network coding across packets of a flow can sustain traffic patterns that cannot be served if network coding were not allowed. Thus, network coding leads to a larger rate region in a multicast crossbar switch. We demonstrate a traffic pattern which requires a switch speedup if coding is not allowed, whereas, with coding the speedup requirement is eliminated completely. In addition to throughput benefits, coding simplifies the characterization of the rate region. We give a graph-theoretic characterization of the rate region with fanout splitting and intra-flow coding, in terms of the stable set polytope of the 'enhanced conflict graph' of the traffic pattern. Such a formulation is not known in the case of fanout splitting without coding. We show that computing the offline schedule (i.e. using prior knowledge of the flow arrival rates) can be reduced to certain graph coloring problems. Finally, we propose online algorithms (i.e. using only the current queue occupancy information) for multicast scheduling based on our graph-theoretic formulation. In particular, we show that a maximum weighted stable set algorithm stabilizes the queues for all rates within the rate region.Comment: 9 pages, submitted to IEEE INFOCOM 200

    Increasing Availability in Distributed Storage Systems via Clustering

    Full text link
    We introduce the Fixed Cluster Repair System (FCRS) as a novel architecture for Distributed Storage Systems (DSS), achieving a small repair bandwidth while guaranteeing a high availability. Specifically we partition the set of servers in a DSS into ss clusters and allow a failed server to choose any cluster other than its own as its repair group. Thereby, we guarantee an availability of s1s-1. We characterize the repair bandwidth vs. storage trade-off for the FCRS under functional repair and show that the minimum repair bandwidth can be improved by an asymptotic multiplicative factor of 2/32/3 compared to the state of the art coding techniques that guarantee the same availability. We further introduce Cubic Codes designed to minimize the repair bandwidth of the FCRS under the exact repair model. We prove an asymptotic multiplicative improvement of 0.790.79 in the minimum repair bandwidth compared to the existing exact repair coding techniques that achieve the same availability. We show that Cubic Codes are information-theoretically optimal for the FCRS with 22 and 33 complete clusters. Furthermore, under the repair-by-transfer model, Cubic Codes are optimal irrespective of the number of clusters

    On the multiple unicast capacity of 3-source, 3-terminal directed acyclic networks

    Get PDF
    We consider the multiple unicast problem with three source-terminal pairs over directed acyclic networks with unit-capacity edges. The three sitis_i-t_i pairs wish to communicate at unit-rate via network coding. The connectivity between the sitis_i - t_i pairs is quantified by means of a connectivity level vector, [k1k2k3][k_1 k_2 k_3] such that there exist kik_i edge-disjoint paths between sis_i and tit_i. In this work we attempt to classify networks based on the connectivity level. It can be observed that unit-rate transmission can be supported by routing if ki3k_i \geq 3, for all i=1,,3i = 1, \dots, 3. In this work, we consider, connectivity level vectors such that mini=1,,3ki<3\min_{i = 1, \dots, 3} k_i < 3. We present either a constructive linear network coding scheme or an instance of a network that cannot support the desired unit-rate requirement, for all such connectivity level vectors except the vector [1 2 4][1~2~4] (and its permutations). The benefits of our schemes extend to networks with higher and potentially different edge capacities. Specifically, our experimental results indicate that for networks where the different source-terminal paths have a significant overlap, our constructive unit-rate schemes can be packed along with routing to provide higher throughput as compared to a pure routing approach.Comment: To appear in the IEEE/ACM Transactions on Networkin
    corecore