3,291 research outputs found

    Bounds for deterministic and stochastic dynamical systems using sum-of-squares optimization

    Get PDF
    We describe methods for proving upper and lower bounds on infinite-time averages in deterministic dynamical systems and on stationary expectations in stochastic systems. The dynamics and the quantities to be bounded are assumed to be polynomial functions of the state variables. The methods are computer-assisted, using sum-of-squares polynomials to formulate sufficient conditions that can be checked by semidefinite programming. In the deterministic case, we seek tight bounds that apply to particular local attractors. An obstacle to proving such bounds is that they do not hold globally; they are generally violated by trajectories starting outside the local basin of attraction. We describe two closely related ways past this obstacle: one that requires knowing a subset of the basin of attraction, and another that considers the zero-noise limit of the corresponding stochastic system. The bounding methods are illustrated using the van der Pol oscillator. We bound deterministic averages on the attracting limit cycle above and below to within 1%, which requires a lower bound that does not hold for the unstable fixed point at the origin. We obtain similarly tight upper and lower bounds on stochastic expectations for a range of noise amplitudes. Limitations of our methods for certain types of deterministic systems are discussed, along with prospects for improvement.Comment: 25 pages; Added new Section 7.2; Added references; Corrected typos; Submitted to SIAD

    A finite state projection algorithm for the stationary solution of the chemical master equation

    Full text link
    The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash (Jour. Chem. Phys. 2006), to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantised tensor train (QTT) implementation of our sFSP method, problems admitting more than 100 million states can be efficiently solved.Comment: 8 figure

    A finite state projection algorithm for the stationary solution of the chemical master equation

    Full text link
    The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash (Jour. Chem. Phys. 2006), to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantised tensor train (QTT) implementation of our sFSP method, problems admitting more than 100 million states can be efficiently solved.Comment: 8 figure

    Large-deviation principles for connectable receivers in wireless networks

    Get PDF
    We study large-deviation principles for a model of wireless networks consisting of Poisson point processes of transmitters and receivers, respectively. To each transmitter we associate a family of connectable receivers whose signal-to-interference-and-noise ratio is larger than a certain connectivity threshold. First, we show a large-deviation principle for the empirical measure of connectable receivers associated with transmitters in large boxes. Second, making use of the observation that the receivers connectable to the origin form a Cox point process, we derive a large-deviation principle for the rescaled process of these receivers as the connection threshold tends to zero. Finally, we show how these results can be used to develop importance-sampling algorithms that substantially reduce the variance for the estimation of probabilities of certain rare events such as users being unable to connectComment: 29 pages, 2 figure

    Some non monotone schemes for Hamilton-Jacobi-Bellman equations

    Get PDF
    We extend the theory of Barles Jakobsen to develop numerical schemes for Hamilton Jacobi Bellman equations. We show that the monotonicity of the schemes can be relaxed still leading to the convergence to the viscosity solution of the equation. We give some examples of such numerical schemes and show that the bounds obtained by the framework developed are not tight. At last we test some numerical schemes.Comment: 24 page
    • …
    corecore