17,234 research outputs found

    Classical and relativistic long-term time variations of some observables for transiting exoplanets

    Full text link
    We analytically work out the long-term, i.e. averaged over one orbital revolution, time variations of some direct observable quantities Y induced by classical and general relativistic dynamical perturbations of the two-body pointlike Newtonian acceleration in the case of transiting exoplanets moving along elliptic orbits. More specifically, the observables YY with which we deal are the transit duration, the radial velocity and the time interval between primary and secondary eclipses. The dynamical effects considered are the centrifugal oblateness of both the star and the planet, their tidal bulges mutually raised on each other, a distant third body X, and general relativity (both Schwarzschild and Lense-Thirring). We take into account the effects due to the perturbations of all the Keplerian orbital elements involved in a consistent and uniform way. First, we explicitly compute their instantaneous time variations due to the dynamical effects considered and plug them in the general expression for the instantaneous change of Y; then, we take the overall average over one orbital revolution of the so-obtained instantaneous rate Y˙(t)\dot Y(t) specialized to the perturbations considered. Instead, somewhat hybrid expressions can be often found in literature: in them, the secular precession of, typically, the periastron only is straightforwardly inserted into instantaneous formulas. Numerical evaluations of the obtained results are given for a typical star-planet scenario and compared with the expected observational accuracies over a time span 10 yr long. Our results are, in principle, valid also for other astronomical scenarios. They may allow, e.g., for designing various tests of gravitational theories with natural and artificial bodies in our solar system. (Abridged)Comment: LaTex2e, 19 pages, 5 figures, 2 tables. Some references updated. To appear in Monthly Notices of the Royal Astronomical Society (MNRAS

    The Acanthaster phenomenon

    Get PDF

    Lunar Outgassing, Transient Phenomena and The Return to The Moon, I: Existing Data

    Full text link
    Herein the transient lunar phenomena (TLP) report database is subjected to a discriminating statistical filter robust against sites of spurious reports, and produces a restricted sample that may be largely reliable. This subset is highly correlated geographically with the catalog of outgassing events seen by the Apollo 15, 16 and Lunar Prospector alpha-particle spectrometers for episodic Rn-222 gas release. Both this robust TLP sample and even the larger, unfiltered sample are highly correlated with the boundary between mare and highlands, as are both deep and shallow moonquakes, as well as Po-210, a long-lived product of Rn-222 decay and a further tracer of outgassing. This offers another significant correlation relating TLPs and outgassing, and may tie some of this activity to sagging mare basalt plains (perhaps mascons). Additionally, low-level but likely significant TLP activity is connected to recent, major impact craters (while moonquakes are not), which may indicate the effects of cracks caused by the impacts, or perhaps avalanches, allowing release of gas. The majority of TLP (and Rn-222) activity, however, is confined to one site that produced much of the basalt in the Procellarum Terrane, and it seems plausible that this TLP activity may be tied to residual outgassing from the formerly largest volcanic ffusion sites from the deep lunar interior. With the coming in the next few years of robotic spacecraft followed by human exploration, the study of TLPs and outgassing is both promising and imperiled. We will have an unprecedented pportunity to study lunar outgassing, but will also deal with a greater burden of anthropogenic lunar gas than ever produced. There is a pressing need to study lunar atmosphere and its sources while still pristine. [Abstract abridged.]Comment: 35 pages, 3 figures, submitted to Icarus. Other papers in series found at http://www.astro.columbia.edu/~arlin/TLP

    Dieppe: the Awards

    Get PDF

    On the origin of X-shaped radio galaxies

    Full text link
    After a brief, critical review of the leading explanations proposed for the small but important subset of radio galaxies showing an X-shaped morphology (XRGs) we propose a generalized model, based on the jet-shell interaction and spin-flip hypotheses. The most popular scenarios for this intriguing phenomenon invoke either hydrodynamical backflows and over-pressured cocoons or rapid jet reorientations, presumably from the spin-flips of central engines following the mergers of pairs of galaxies, each of which contains a supermassive black hole (SMBH). We confront these models with a number of key observations and thus argue that none of the models is capable of explaining the entire range of salient observational properties of XRGs, although some of the arguments raised in the literature against the spin-flip scenario are probably not tenable. We then propose here a new scenario which also involves galactic mergers but would allow the spin of the central engine to maintain its direction. Motivated by the detailed multi-band observations of the nearest radio galaxy, Centaurus A, this new model emphasizes the role of interactions between the jets and the shells of stars and gas that form and rotate around the merged galaxy and can cause temporary deflections of the jets, occasionally giving rise to an X-shaped radio structure. Although each of the models is likely to be relevant to a subset of XRGs, the bulk of the evidence indicates that most of them are best explained by the jet-shell interaction or spin-flip hypotheses.Comment: 19 pages, major revision including two Appendices and a Table, accepted in Research in Astronomy and Astrophysic

    Quaternary volcanism, tephras, and tephra-derived soils in New Zealand: an introductory review

    Get PDF
    This two-part article comprises brief introductions to (1) volcanism and its products in general and to the broad pattern of Quaternary volcanism and tephrostratigraphy in North Island, and (2) the ensuing tephra-derived soils of North Island. Part 1 derives mainly from Smith et al. (2006), Leonard et al. (2007), and Lowe (2008a). Other useful reviews include those of Neall (2001), Graham (2008: Chapter 7), Wilson et al. (2009), and Cole et al. (2010). Recent reviews on tephras include Shane (2000), Alloway et al. (2007), Lowe (2008b, 2011), and Lowe et al. (2008a, 2008b). A history of tephra studies in New Zealand was reported by Lowe (1990). Part 2 describes the distribution and character of the main tephra-derived soils, these being Entisols and Andisols (mostly Vitrands and Udands) and Ultisols (Lowe and Palmer, 2005). Books on these and other soils in New Zealand include NZ Soil Bureau (1968), Gibbs (1980), McLaren and Cameron (1996), Cornforth (1998), and Molloy and Christie (1998). An excellent overview is the web-based article by Hewitt (2008), and encyclopaedic reviews by Neall (2006) and McDaniel et al. (2011) include New Zealand examples. Tonkin (2007a, 2007b, 2007c) provided a history of soil survey and soil conservation activities in New Zealand. A quantitatively-based classification of New Zealand‟s terrestrial environments was published by Leathwick et al. (2003)
    • …
    corecore