1,200 research outputs found

    Proximal Convexification Procedures in Combinatorial Optimization

    Get PDF
    Final version has appeared under the title "On a primal-proximal heuristic in discrete optimization", in Math. Program., Ser. A 104, pp 105-128 (2005), DOI 10.1007/s10107-004-0571-2Lagrangian relaxation is useful to bound the optimal value of a given optimization problem, and also to obtain relaxed solutions. To obtain primal solutions, it is conceivable to use a convexification procedure suggested by D.P. Bertsekas in 1979, based on the proximal algorithm in the primal space. The present paper studies the theory assessing the approach in the framework of combinatorial optimization. Our results indicate that very little can be expected in theory, even though fairly good practical results have been obtained for the unit-commitment problem

    A Smoothed Dual Approach for Variational Wasserstein Problems

    Full text link
    Variational problems that involve Wasserstein distances have been recently proposed to summarize and learn from probability measures. Despite being conceptually simple, such problems are computationally challenging because they involve minimizing over quantities (Wasserstein distances) that are themselves hard to compute. We show that the dual formulation of Wasserstein variational problems introduced recently by Carlier et al. (2014) can be regularized using an entropic smoothing, which leads to smooth, differentiable, convex optimization problems that are simpler to implement and numerically more stable. We illustrate the versatility of this approach by applying it to the computation of Wasserstein barycenters and gradient flows of spacial regularization functionals

    Primal-Dual Algorithms for Non-negative Matrix Factorization with the Kullback-Leibler Divergence

    Get PDF
    Non-negative matrix factorization (NMF) approximates a given matrix as a product of two non-negative matrices. Multiplicative algorithms deliver reliable results, but they show slow convergence for high-dimensional data and may be stuck away from local minima. Gradient descent methods have better behavior, but only apply to smooth losses such as the least-squares loss. In this article, we propose a first-order primal-dual algorithm for non-negative decomposition problems (where one factor is fixed) with the KL divergence, based on the Chambolle-Pock algorithm. All required computations may be obtained in closed form and we provide an efficient heuristic way to select step-sizes. By using alternating optimization, our algorithm readily extends to NMF and, on synthetic examples, face recognition or music source separation datasets, it is either faster than existing algorithms, or leads to improved local optima, or both

    MAP inference via Block-Coordinate Frank-Wolfe Algorithm

    Full text link
    We present a new proximal bundle method for Maximum-A-Posteriori (MAP) inference in structured energy minimization problems. The method optimizes a Lagrangean relaxation of the original energy minimization problem using a multi plane block-coordinate Frank-Wolfe method that takes advantage of the specific structure of the Lagrangean decomposition. We show empirically that our method outperforms state-of-the-art Lagrangean decomposition based algorithms on some challenging Markov Random Field, multi-label discrete tomography and graph matching problems

    Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm

    Get PDF
    The primal-dual optimization algorithm developed in Chambolle and Pock (CP), 2011 is applied to various convex optimization problems of interest in computed tomography (CT) image reconstruction. This algorithm allows for rapid prototyping of optimization problems for the purpose of designing iterative image reconstruction algorithms for CT. The primal-dual algorithm is briefly summarized in the article, and its potential for prototyping is demonstrated by explicitly deriving CP algorithm instances for many optimization problems relevant to CT. An example application modeling breast CT with low-intensity X-ray illumination is presented.Comment: Resubmitted to Physics in Medicine and Biology. Text has been modified according to referee comments, and typos in the equations have been correcte

    Subspace System Identification via Weighted Nuclear Norm Optimization

    Full text link
    We present a subspace system identification method based on weighted nuclear norm approximation. The weight matrices used in the nuclear norm minimization are the same weights as used in standard subspace identification methods. We show that the inclusion of the weights improves the performance in terms of fit on validation data. As a second benefit, the weights reduce the size of the optimization problems that need to be solved. Experimental results from randomly generated examples as well as from the Daisy benchmark collection are reported. The key to an efficient implementation is the use of the alternating direction method of multipliers to solve the optimization problem.Comment: Submitted to IEEE Conference on Decision and Contro

    Scaling Algorithms for Unbalanced Transport Problems

    Full text link
    This article introduces a new class of fast algorithms to approximate variational problems involving unbalanced optimal transport. While classical optimal transport considers only normalized probability distributions, it is important for many applications to be able to compute some sort of relaxed transportation between arbitrary positive measures. A generic class of such "unbalanced" optimal transport problems has been recently proposed by several authors. In this paper, we show how to extend the, now classical, entropic regularization scheme to these unbalanced problems. This gives rise to fast, highly parallelizable algorithms that operate by performing only diagonal scaling (i.e. pointwise multiplications) of the transportation couplings. They are generalizations of the celebrated Sinkhorn algorithm. We show how these methods can be used to solve unbalanced transport, unbalanced gradient flows, and to compute unbalanced barycenters. We showcase applications to 2-D shape modification, color transfer, and growth models

    A Smooth Primal-Dual Optimization Framework for Nonsmooth Composite Convex Minimization

    Get PDF
    We propose a new first-order primal-dual optimization framework for a convex optimization template with broad applications. Our optimization algorithms feature optimal convergence guarantees under a variety of common structure assumptions on the problem template. Our analysis relies on a novel combination of three classic ideas applied to the primal-dual gap function: smoothing, acceleration, and homotopy. The algorithms due to the new approach achieve the best known convergence rate results, in particular when the template consists of only non-smooth functions. We also outline a restart strategy for the acceleration to significantly enhance the practical performance. We demonstrate relations with the augmented Lagrangian method and show how to exploit the strongly convex objectives with rigorous convergence rate guarantees. We provide numerical evidence with two examples and illustrate that the new methods can outperform the state-of-the-art, including Chambolle-Pock, and the alternating direction method-of-multipliers algorithms.Comment: 35 pages, accepted for publication on SIAM J. Optimization. Tech. Report, Oct. 2015 (last update Sept. 2016
    • …
    corecore