286 research outputs found

    Image morphological processing

    Get PDF
    Mathematical Morphology with applications in image processing and analysis has been becoming increasingly important in today\u27s technology. Mathematical Morphological operations, which are based on set theory, can extract object features by suitably shaped structuring elements. Mathematical Morphological filters are combinations of morphological operations that transform an image into a quantitative description of its geometrical structure based on structuring elements. Important applications of morphological operations are shape description, shape recognition, nonlinear filtering, industrial parts inspection, and medical image processing. In this dissertation, basic morphological operations, properties and fuzzy morphology are reviewed. Existing techniques for solving corner and edge detection are presented. A new approach to solve corner detection using regulated mathematical morphology is presented and is shown that it is more efficient in binary images than the existing mathematical morphology based asymmetric closing for corner detection. A new class of morphological operations called sweep mathematical morphological operations is developed. The theoretical framework for representation, computation and analysis of sweep morphology is presented. The basic sweep morphological operations, sweep dilation and sweep erosion, are defined and their properties are studied. It is shown that considering only the boundaries and performing operations on the boundaries can substantially reduce the computation. Various applications of this new class of morphological operations are discussed, including the blending of swept surfaces with deformations, image enhancement, edge linking and shortest path planning for rotating objects. Sweep mathematical morphology is an efficient tool for geometric modeling and representation. The sweep dilation/erosion provides a natural representation of sweep motion in the manufacturing processes. A set of grammatical rules that govern the generation of objects belonging to the same group are defined. Earley\u27s parser serves in the screening process to determine whether a pattern is a part of the language. Finally, summary and future research of this dissertation are provided

    Left-invariant evolutions of wavelet transforms on the Similitude Group

    Get PDF
    Enhancement of multiple-scale elongated structures in noisy image data is relevant for many biomedical applications but commonly used PDE-based enhancement techniques often fail at crossings in an image. To get an overview of how an image is composed of local multiple-scale elongated structures we construct a multiple scale orientation score, which is a continuous wavelet transform on the similitude group, SIM(2). Our unitary transform maps the space of images onto a reproducing kernel space defined on SIM(2), allowing us to robustly relate Euclidean (and scaling) invariant operators on images to left-invariant operators on the corresponding continuous wavelet transform. Rather than often used wavelet (soft-)thresholding techniques, we employ the group structure in the wavelet domain to arrive at left-invariant evolutions and flows (diffusion), for contextual crossing preserving enhancement of multiple scale elongated structures in noisy images. We present experiments that display benefits of our work compared to recent PDE techniques acting directly on the images and to our previous work on left-invariant diffusions on orientation scores defined on Euclidean motion group.Comment: 40 page

    Feature-based validation reasoning for intent-driven engineering design

    Get PDF
    Feature based modelling represents the future of CAD systems. However, operations such as modelling and editing can corrupt the validity of a feature-based model representation. Feature interactions are a consequence of feature operations and the existence of a number of features in the same model. Feature interaction affects not only the solid representation of the part, but also the functional intentions embedded within features. A technique is thus required to assess the integrity of a feature-based model from various perspectives, including the functional intentional one, and this technique must take into account the problems brought about by feature interactions and operations. The understanding, reasoning and resolution of invalid feature-based models requires an understanding of the feature interaction phenomena, as well as the characterisation of these functional intentions. A system capable of such assessment is called a feature-based representation validation system. This research studies feature interaction phenomena and feature-based designer's intents as a medium to achieve a feature-based representation validation system. [Continues.

    Connected Attribute Filtering Based on Contour Smoothness

    Get PDF

    Superquadric representation of scenes from multi-view range data

    Get PDF
    Object representation denotes representing three-dimensional (3D) real-world objects with known graphic or mathematic primitives recognizable to computers. This research has numerous applications for object-related tasks in areas including computer vision, computer graphics, reverse engineering, etc. Superquadrics, as volumetric and parametric models, have been selected to be the representation primitives throughout this research. Superquadrics are able to represent a large family of solid shapes by a single equation with only a few parameters. This dissertation addresses superquadric representation of multi-part objects and multiobject scenes. Two issues motivate this research. First, superquadric representation of multipart objects or multi-object scenes has been an unsolved problem due to the complex geometry of objects. Second, superquadrics recovered from single-view range data tend to have low confidence and accuracy due to partially scanned object surfaces caused by inherent occlusions. To address these two problems, this dissertation proposes a multi-view superquadric representation algorithm. By incorporating both part decomposition and multi-view range data, the proposed algorithm is able to not only represent multi-part objects or multi-object scenes, but also achieve high confidence and accuracy of recovered superquadrics. The multi-view superquadric representation algorithm consists of (i) initial superquadric model recovery from single-view range data, (ii) pairwise view registration based on recovered superquadric models, (iii) view integration, (iv) part decomposition, and (v) final superquadric fitting for each decomposed part. Within the multi-view superquadric representation framework, this dissertation proposes a 3D part decomposition algorithm to automatically decompose multi-part objects or multiobject scenes into their constituent single parts consistent with human visual perception. Superquadrics can then be recovered for each decomposed single-part object. The proposed part decomposition algorithm is based on curvature analysis, and includes (i) Gaussian curvature estimation, (ii) boundary labeling, (iii) part growing and labeling, and (iv) post-processing. In addition, this dissertation proposes an extended view registration algorithm based on superquadrics. The proposed view registration algorithm is able to handle deformable superquadrics as well as 3D unstructured data sets. For superquadric fitting, two objective functions primarily used in the literature have been comprehensively investigated with respect to noise, viewpoints, sample resolutions, etc. The objective function proved to have better performance has been used throughout this dissertation. In summary, the three algorithms (contributions) proposed in this dissertation are generic and flexible in the sense of handling triangle meshes, which are standard surface primitives in computer vision and graphics. For each proposed algorithm, the dissertation presents both theory and experimental results. The results demonstrate the efficiency of the algorithms using both synthetic and real range data of a large variety of objects and scenes. In addition, the experimental results include comparisons with previous methods from the literature. Finally, the dissertation concludes with a summary of the contributions to the state of the art in superquadric representation, and presents possible future extensions to this research

    Distance based heterogeneous volume modelling.

    Get PDF
    Natural objects, such as bones and watermelons, often have a heterogeneous composition and complex internal structures. Material properties inside the object can change abruptly or gradually, and representing such changes digitally can be problematic. Attribute functions represent physical properties distribution in the volumetric object. Modelling complex attributes within a volume is a complex task. There are several approaches to modelling attributes, but distance functions have gained popularity for heterogeneous object modelling because, in addition to their usefulness, they lead to predictability and intuitiveness. In this thesis, we consider a unified framework for heterogeneous volume modelling, specifically using distance fields. In particular, we tackle various issues associated with them such as the interpolation of volumetric attributes through time for shape transformation and intuitive and predictable interpolation of attributes inside a shape. To achieve these results, we rely on smooth approximate distance fields and interior distances. This thesis deals with outstanding issues in heterogeneous object modelling, and more specifically in modelling functionally graded materials and structures using different types of distances and approximation thereof. We demonstrate the benefits of heterogeneous volume modelling using smooth approximate distance fields with various applications, such as adaptive microstructures, morphological shape generation, shape driven interpolation of material properties through time and shape conforming interpolation of properties. Distance based modelling of attributes allows us to have a better parametrization of the object volume and design gradient properties across an object. This becomes more important nowadays with the growing interest in rapid prototyping and digital fabrication of heterogeneous objects and can find practical applications in different industries

    Computer Vision Applications for Autonomous Aerial Vehicles

    Get PDF
    Undoubtedly, unmanned aerial vehicles (UAVs) have experienced a great leap forward over the last decade. It is not surprising anymore to see a UAV being used to accomplish a certain task, which was previously carried out by humans or a former technology. The proliferation of special vision sensors, such as depth cameras, lidar sensors and thermal cameras, and major breakthroughs in computer vision and machine learning fields accelerated the advance of UAV research and technology. However, due to certain unique challenges imposed by UAVs, such as limited payload capacity, unreliable communication link with the ground stations and data safety, UAVs are compelled to perform many tasks on their onboard embedded processing units, which makes it difficult to readily implement the most advanced algorithms on UAVs. This thesis focuses on computer vision and machine learning applications for UAVs equipped with onboard embedded platforms, and presents algorithms that utilize data from multiple modalities. The presented work covers a broad spectrum of algorithms and applications for UAVs, such as indoor UAV perception, 3D understanding with deep learning, UAV localization, and structural inspection with UAVs. Visual guidance and scene understanding without relying on pre-installed tags or markers is the desired approach for fully autonomous navigation of UAVs in conjunction with the global positioning systems (GPS), or especially when GPS information is either unavailable or unreliable. Thus, semantic and geometric understanding of the surroundings become vital to utilize vision as guidance in the autonomous navigation pipelines. In this context, first, robust altitude measurement, safe landing zone detection and doorway detection methods are presented for autonomous UAVs operating indoors. These approaches are implemented on Google Project Tango platform, which is an embedded platform equipped with various sensors including a depth camera. Next, a modified capsule network for 3D object classification is presented with weight optimization so that the network can be fit and run on memory-constrained platforms. Then, a semantic segmentation method for 3D point clouds is developed for a more general visual perception on a UAV equipped with a 3D vision sensor. Next, this thesis presents algorithms for structural health monitoring applications involving UAVs. First, a 3D point cloud-based, drift-free and lightweight localization method is presented for depth camera-equipped UAVs that perform bridge inspection, where GPS signal is unreliable. Next, a thermal leakage detection algorithm is presented for detecting thermal anomalies on building envelopes using aerial thermography from UAVs. Then, building on our thermal anomaly identification expertise gained on the previous task, a novel performance anomaly identification metric (AIM) is presented for more reliable performance evaluation of thermal anomaly identification methods
    • …
    corecore