11,931 research outputs found

    Approximation Techniques for Average Completion Time Scheduling

    Get PDF
    We consider the problem of nonpreemptive scheduling to minimize average ( weighted) completion time, allowing for release dates, parallel machines, and precedence constraints. Recent work has led to constant-factor approximations for this problem based on solving a preemptive or linear programming relaxation and then using the solution to get an ordering on the jobs. We introduce several new techniques which generalize this basic paradigm. We use these ideas to obtain improved approximation algorithms for one-machine scheduling to minimize average completion time with release dates. In the process, we obtain an optimal randomized on-line algorithm for the same problem that beats a lower bound for deterministic on-line algorithms. We consider extensions to the case of parallel machine scheduling, and for this we introduce two new ideas: first, we show that a preemptive one-machine relaxation is a powerful tool for designing parallel machine scheduling algorithms that simultaneously produce good approximations and have small running times; second, we show that a nongreedy “rounding” of the relaxation yields better approximations than a greedy one. We also prove a general theore mrelating the value of one- machine relaxations to that of the schedules obtained for the original m-machine problems. This theorem applies even when there are precedence constraints on the jobs. We apply this result to obtain improved approximation ratios for precedence graphs such as in-trees, out-trees, and series-parallel graphs

    Scheduling AND/OR-Networks on Identical Parallel Machines

    Get PDF
    Scheduling precedence constrained jobs on identical parallel machines is a well investigated problem with many applications. AND/OR-networks constitute a useful generalization of standard precedence constraints where certain jobs can be executed as soon as at least one of their direct predecessors is completed. For the problem of scheduling AND/OR-networks on parallel machines, we present a 2-approximation algorithm for the objective of minimizing the makespan. The main idea of the algorithm is to transform the AND/OR constraints into standard constraints. For the objective of minimizing the total weighted completion time on one machine, scheduling AND/OR-networks is as hard to approximate as Label Cover. We show that list scheduling with shortest processing time rule is an O(sqrt(n))-approximation for unit weights on one machine and an n-approximation for arbitrary weights

    Some topics on deterministic scheduling problems

    Get PDF
    Sequencing and scheduling problems are motivated by allocation of limited resources over time. The goal is to find an optimal allocation where optimality is defined by some problem specific objectives. This dissertation considers the scheduling of a set of ri tasks, with precedence constraints, on m \u3e= 1 identical and parallel processors so as to minimize the makespan. Specifically, it considers the situation where tasks, along with their precedence constraints, are released at different times, and the scheduler has to make scheduling decisions without knowledge of future releases. Both preemptive and nonpreemptive schedules are considered. This dissertation shows that optimal online algorithms exist for some cases, while for others it is impossible to have one. The results give a sharp boundary delineating the possible and the impossible cases. Then an O(n log n)-time implementation is given for the algorithm which solves P|pj = 1, rj, outtree| ΣCj and P|pmtn, pj=1,rj,outtree|ΣCj. A fundamental problem in scheduling theory is that of scheduling a set of n unit-execution-time (UET) tasks, with precedence constraints, on m \u3e 1 parallel and identical processors so as to minimize the mean flow time. For arbitrary precedence constraints, this dissertation gives a 2-approximation algorithm. For intrees, a 1.5-approximation algorithm is given. Six dual criteria problems are also considered in this dissertation. Two open problems are first solved. Both problems are single machine scheduling problems with the number of tardy jobs as the primary criterion and with the total completion time and the total tardiness as the secondary criterion, respectively. Both problems are shown to be NP-hard. Then it focuses on bi-criteria scheduling problems involving the number of tardy jobs, the maximum weighted tardiness and the maximum tardiness. NP-hardness proofs are given for the scheduling problems when the number of tardy jobs is the primary criterion and the maximum weighted tardiness is the secondary criterion, or vice versa. It then considers complexity relationships between the various problems, gives polynomial-time algorithms for some special cases, and proposes fast heuristics for the general case

    How the structure of precedence constraints may change the complexity class of scheduling problems

    Full text link
    This survey aims at demonstrating that the structure of precedence constraints plays a tremendous role on the complexity of scheduling problems. Indeed many problems can be NP-hard when considering general precedence constraints, while they become polynomially solvable for particular precedence constraints. We also show that there still are many very exciting challenges in this research area

    Parallel machine scheduling with precedence constraints and setup times

    Full text link
    This paper presents different methods for solving parallel machine scheduling problems with precedence constraints and setup times between the jobs. Limited discrepancy search methods mixed with local search principles, dominance conditions and specific lower bounds are proposed. The proposed methods are evaluated on a set of randomly generated instances and compared with previous results from the literature and those obtained with an efficient commercial solver. We conclude that our propositions are quite competitive and our results even outperform other approaches in most cases

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Scheduling to Minimize Total Weighted Completion Time via Time-Indexed Linear Programming Relaxations

    Full text link
    We study approximation algorithms for scheduling problems with the objective of minimizing total weighted completion time, under identical and related machine models with job precedence constraints. We give algorithms that improve upon many previous 15 to 20-year-old state-of-art results. A major theme in these results is the use of time-indexed linear programming relaxations. These are natural relaxations for their respective problems, but surprisingly are not studied in the literature. We also consider the scheduling problem of minimizing total weighted completion time on unrelated machines. The recent breakthrough result of [Bansal-Srinivasan-Svensson, STOC 2016] gave a (1.5c)(1.5-c)-approximation for the problem, based on some lift-and-project SDP relaxation. Our main result is that a (1.5c)(1.5 - c)-approximation can also be achieved using a natural and considerably simpler time-indexed LP relaxation for the problem. We hope this relaxation can provide new insights into the problem
    corecore