3,432 research outputs found

    On a packing problem for infinite graphs and independence spaces

    Get PDF
    In this paper several infinite extensions of the well-known results for packing bases in finite matroids are considered. A counterexample is given to a conjecture of Nash-Williams on edge-disjoint spanning trees of countable graphs, and a sufficient condition is proved for the packing problem in independence spaces over a countably infinite set. © 1979

    A semidefinite programming hierarchy for packing problems in discrete geometry

    Full text link
    Packing problems in discrete geometry can be modeled as finding independent sets in infinite graphs where one is interested in independent sets which are as large as possible. For finite graphs one popular way to compute upper bounds for the maximal size of an independent set is to use Lasserre's semidefinite programming hierarchy. We generalize this approach to infinite graphs. For this we introduce topological packing graphs as an abstraction for infinite graphs coming from packing problems in discrete geometry. We show that our hierarchy converges to the independence number.Comment: (v2) 25 pages, revision based on suggestions by referee, accepted in Mathematical Programming Series B special issue on polynomial optimizatio

    Mathematical optimization for packing problems

    Full text link
    During the last few years several new results on packing problems were obtained using a blend of tools from semidefinite optimization, polynomial optimization, and harmonic analysis. We survey some of these results and the techniques involved, concentrating on geometric packing problems such as the sphere-packing problem or the problem of packing regular tetrahedra in R^3.Comment: 17 pages, written for the SIAG/OPT Views-and-News, (v2) some updates and correction

    Axioms for infinite matroids

    Full text link
    We give axiomatic foundations for non-finitary infinite matroids with duality, in terms of independent sets, bases, circuits, closure and rank. This completes the solution to a problem of Rado of 1966.Comment: 33 pp., 2 fig

    A Combinatorial Approach to Nonlocality and Contextuality

    Full text link
    So far, most of the literature on (quantum) contextuality and the Kochen-Specker theorem seems either to concern particular examples of contextuality, or be considered as quantum logic. Here, we develop a general formalism for contextuality scenarios based on the combinatorics of hypergraphs which significantly refines a similar recent approach by Cabello, Severini and Winter (CSW). In contrast to CSW, we explicitly include the normalization of probabilities, which gives us a much finer control over the various sets of probabilistic models like classical, quantum and generalized probabilistic. In particular, our framework specializes to (quantum) nonlocality in the case of Bell scenarios, which arise very naturally from a certain product of contextuality scenarios due to Foulis and Randall. In the spirit of CSW, we find close relationships to several graph invariants. The recently proposed Local Orthogonality principle turns out to be a special case of a general principle for contextuality scenarios related to the Shannon capacity of graphs. Our results imply that it is strictly dominated by a low level of the Navascu\'es-Pironio-Ac\'in hierarchy of semidefinite programs, which we also apply to contextuality scenarios. We derive a wealth of results in our framework, many of these relating to quantum and supraquantum contextuality and nonlocality, and state numerous open problems. For example, we show that the set of quantum models on a contextuality scenario can in general not be characterized in terms of a graph invariant. In terms of graph theory, our main result is this: there exist two graphs G1G_1 and G2G_2 with the properties \begin{align*} \alpha(G_1) &= \Theta(G_1), & \alpha(G_2) &= \vartheta(G_2), \\[6pt] \Theta(G_1\boxtimes G_2) & > \Theta(G_1)\cdot \Theta(G_2),& \Theta(G_1 + G_2) & > \Theta(G_1) + \Theta(G_2). \end{align*}Comment: minor revision, same results as in v2, to appear in Comm. Math. Phy

    On the number of types in sparse graphs

    Full text link
    We prove that for every class of graphs C\mathcal{C} which is nowhere dense, as defined by Nesetril and Ossona de Mendez, and for every first order formula ϕ(xˉ,yˉ)\phi(\bar x,\bar y), whenever one draws a graph GCG\in \mathcal{C} and a subset of its nodes AA, the number of subsets of AyˉA^{|\bar y|} which are of the form {vˉAyˉ ⁣:Gϕ(uˉ,vˉ)}\{\bar v\in A^{|\bar y|}\, \colon\, G\models\phi(\bar u,\bar v)\} for some valuation uˉ\bar u of xˉ\bar x in GG is bounded by O(Axˉ+ϵ)\mathcal{O}(|A|^{|\bar x|+\epsilon}), for every ϵ>0\epsilon>0. This provides optimal bounds on the VC-density of first-order definable set systems in nowhere dense graph classes. We also give two new proofs of upper bounds on quantities in nowhere dense classes which are relevant for their logical treatment. Firstly, we provide a new proof of the fact that nowhere dense classes are uniformly quasi-wide, implying explicit, polynomial upper bounds on the functions relating the two notions. Secondly, we give a new combinatorial proof of the result of Adler and Adler stating that every nowhere dense class of graphs is stable. In contrast to the previous proofs of the above results, our proofs are completely finitistic and constructive, and yield explicit and computable upper bounds on quantities related to uniform quasi-wideness (margins) and stability (ladder indices)
    corecore