4,087 research outputs found

    Permanence and almost periodic solution of a multispecies Lotka-Volterra mutualism system with time varying delays on time scales

    Full text link
    In this paper, we consider the almost periodic dynamics of a multispecies Lotka-Volterra mutualism system with time varying delays on time scales. By establishing some dynamic inequalities on time scales, a permanence result for the model is obtained. Furthermore, by means of the almost periodic functional hull theory on time scales and Lyapunov functional, some criteria are obtained for the existence, uniqueness and global attractivity of almost periodic solutions of the model. Our results complement and extend some scientific work in recent years. Finally, an example is given to illustrate the main results.Comment: 31page

    The expression of stlA in Photorhabdus luminescens is controlled by nutrient limitation

    Get PDF
    Photorhabdus is a genus of Gram-negative entomopathogenic bacteria that also maintain a mutualistic association with nematodes from the family Heterorhabditis. Photorhabdus has an extensive secondary metabolism that is required for the interaction between the bacteria and the nematode. A major component of this secondary metabolism is a stilbene molecule, called ST. The first step in ST biosynthesis is the non-oxidative deamination of phenylalanine resulting in the production of cinnamic acid. This reaction is catalyzed by phenylalanine-ammonium lyase, an enzyme encoded by the stlA gene. In this study we show, using a stlA-gfp transcriptional fusion, that the expression of stlA is regulated by nutrient limitation through a regulatory network that involves at least 3 regulators. We show that TyrR, a LysR-type transcriptional regulator that regulates gene expression in response to aromatic amino acids in E. coli, is absolutely required for stlA expression. We also show that stlA expression is modulated by σS and Lrp, regulators that are implicated in the regulation of the response to nutrient limitation in other bacteria. This work is the first that describes pathway-specific regulation of secondary metabolism in Photorhabdus and, therefore, our study provides an initial insight into the complex regulatory network that controls secondary metabolism, and therefore mutualism, in this model organism

    Climate change promotes parasitism in a coral symbiosis.

    Get PDF
    Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change

    Positive Feedback between Mycorrhizal Fungi and Plants Influences Plant Invasion Success and Resistance to Invasion

    Get PDF
    Negative or positive feedback between arbuscular mycorrhizal fungi (AMF) and host plants can contribute to plant species interactions, but how this feedback affects plant invasion or resistance to invasion is not well known. Here we tested how alterations in AMF community induced by an invasive plant species generate feedback to the invasive plant itself and affect subsequent interactions between the invasive species and its native neighbors. We first examined the effects of the invasive forb Solidago canadensis L. on AMF communities comprising five different AMF species. We then examined the effects of the altered AMF community on mutualisms formed with the native legume forb species Kummerowia striata (Thunb.) Schindl. and on the interaction between the invasive and native plants. The host preferences of the five AMF were also assessed to test whether the AMF form preferred mutualistic relations with the invasive and/or the native species. We found that S. canadensis altered AMF spore composition by increasing one AMF species (Glomus geosporum) while reducing Glomus mosseae, which is the dominant species in the field. The host preference test showed that S. canadensis had promoted the abundance of AMF species (G. geosporum) that most promoted its own growth. As a consequence, the altered AMF community enhanced the competitiveness of invasive S. canadensis at the expense of K. striata. Our results demonstrate that the invasive S. canadensis alters soil AMF community composition because of fungal-host preference. This change in the composition of the AMF community generates positive feedback to the invasive S. canadensis itself and decreases AM associations with native K. striata, thereby making the native K. striata less dominant
    corecore