58 research outputs found

    Abstract hyperovals, partial geometries, and transitive hyperovals

    Get PDF
    Includes bibliographical references.2015 Summer.A hyperoval is a (q+2)- arc of a projective plane π, of order q with q even. Let G denote the collineation group of π containing a hyperoval Ω. We say that Ω is transitive if for any pair of points x, y is an element of Ω, there exists a g is an element of G fixing Ω setwise such that xg = y. In1987, Billotti and Korchmaros proved that if 4||G|, then either Ω is the regular hyperoval in PG(2,q) for q=2 or 4 or q = 16 and |G||144. In 2005, Sonnino proved that if |G| = 144, then π is desarguesian and Ω is isomorphic to the Lunelli-Sce hyperoval. For our main result, we show that if G is the collineation group of a projective plane containing a transitivehyperoval with 4 ||G|, then |G| = 144 and Ω is isomorphic to the Lunelli-Sce hyperoval. We also show that if A(X) is an abstract hyperoval of order n ≡ 2(mod 4); then |Aut(A(X))| is odd. If A(X) is an abstract hyperoval of order n such that Aut(A(X)) contains two distinct involutions with |FixX(g)| and |FixX(ƒ)| ≥ 4. Then we show that FixX(g) ≠ FixX(ƒ). We also show that there is no hyperoval of order 12 admitting a group whose order is divisible by 11 or 13, by showing that there is no partial geometry pg(6, 10, 5) admitting a group of order 11 or of order 13. Finally, we were able to show that there is no hyperoval in a projective plane of order 12 with a dihedral subgroup of order 14, by showing that that there is no partial geometry pg(7, 12, 6) admitting a dihedral group of order 14. The latter results are achieved by studying abstract hyperovals and their symmetries

    On the dual of the dual hyperoval from APN function f(x)=x3+Tr(x9)

    Get PDF
    AbstractUsing a quadratic APN function f on GF(2d+1), Yoshiara (2009) [15] constructed a d-dimensional dual hyperoval Sf in PG(2d+1,2). In Taniguchi and Yoshiara (2005) [13], we prove that the dual of Sf, which we denote by Sf⊥, is also a d-dimensional dual hyperoval if and only if d is even. In this note, for a quadratic APN function f(x)=x3+Tr(x9) on GF(2d+1) by Budaghyan, Carlet and Leander (2009) [2], we show that the dual Sf⊥ and the transpose of the dual Sf⊥T are not isomorphic to the known bilinear dual hyperovals if d is even and d⩾6

    On some representations of quadratic APN functions and dimensional dual hyperovals

    Get PDF
    • …
    corecore