37 research outputs found

    Permanence and Periodic Solution of Predator-Prey System with Holling Type Functional Response and Impulses

    Get PDF
    We considered a nonautonomous two dimensional predator-prey system with impulsive effect. Conditions for the permanence of the system and for the existence of a unique stable periodic solution are obtained.S

    Advanced Nonlinear Dynamics of Population Biology and Epidemiology

    Get PDF
    abstract: Modern biology and epidemiology have become more and more driven by the need of mathematical models and theory to elucidate general phenomena arising from the complexity of interactions on the numerous spatial, temporal, and hierarchical scales at which biological systems operate and diseases spread. Epidemic modeling and study of disease spread such as gonorrhea, HIV/AIDS, BSE, foot and mouth disease, measles, and rubella have had an impact on public health policy around the world which includes the United Kingdom, The Netherlands, Canada, and the United States. A wide variety of modeling approaches are involved in building up suitable models. Ordinary differential equation models, partial differential equation models, delay differential equation models, stochastic differential equation models, difference equation models, and nonautonomous models are examples of modeling approaches that are useful and capable of providing applicable strategies for the coexistence and conservation of endangered species, to prevent the overexploitation of natural resources, to control disease’s outbreak, and to make optimal dosing polices for the drug administration, and so forth.View the article as published at https://www.hindawi.com/journals/aaa/2014/214514

    Stability and bifurcation in a ratio-dependent Holling-III system with diffusion and delay

    Get PDF
    A diffusive ratio-dependent predator-prey system with Holling-III functional response and delay effects is considered. Global stability of the boundary equilibrium and the stability of the unique positive steady state and the existence of spatially homogeneous and inhomogeneous periodic solutions are investigated in detail, by the maximum principle and the characteristic equations. Ratio-dependent functional response exhibits rich spatiotemporal patterns. It is found that, the system without delay is dissipative and uniformly permanent under certain conditions, the delay can destabilize the positive constant equilibrium and spatial Hopf bifurcations occur as the delay crosses through some critical values. Then, the direction and the stability of Hopf bifurcations are determined by applying the center manifold reduction and the normal form theory for partial functional differential equations. Some numerical simulations are carried out to illustrate the theoretical results

    Analysis Dynamics Two Prey of a Predator-Prey Model with Crowley–Martin Response Function

    Get PDF
    The predator-prey model has been extensively developed in recent research. This research is an applied literature study with a proposed dynamics model using the Crowley–Martin response function, namely the development of the Beddington-DeAngelis response function. The aim of this research is to construct a mathematical model of the predator-prey model, equilibrium analysis and population trajectories analysis. The results showed that the predator-prey model produced seven non-negative equilibrium points, but only one equilibrium point was tested for stability. Stability analysis produces negative eigenvalues indicating fulfillment of the Routh-Hurwitz criteria so that the equilibrium point is locally asymtotically stable. Analysis of the stability of the equilibrium point indicates stable population growth over a long period of time. Numerical simulation is also given to see the trajectories of the population growth movement. The population growth of first prey and second prey is not much different, significant growth occurs at the beginning of the growth period, while after reaching the peak the trajectory growth slopes towards a stable point. Different growth is shown by the predator population, which grows linearly with time. The growth of predators is very significant because predators have the freedom to eat resources. Various types of trajectory patterns in ecological parameters show good results for population growth with the given assumptions

    Mathematical Analysis for a Discrete Predator-Prey Model with Time Delay and Holling II Functional Response

    Get PDF
    This paper is concerned with a discrete predator-prey model with Holling II functional response and delays. Applying Gaines and Mawhin's continuation theorem of coincidence degree theory and the method of Lyapunov function, we obtain some sufficient conditions for the existence global asymptotic stability of positive periodic solutions of the model

    Complex dynamics near extinction in a predator-prey model with ratio dependence and Holling type III functional response

    Get PDF
    In this paper, we analyze a recently proposed predator-prey model with ratio dependence and Holling type III functional response, with particular emphasis on the dynamics close to extinction. By using Briot-Bouquet transformation we transform the model into a system, where the extinction steady state is represented by up to three distinct steady states, whose existence is determined by the values of appropriate Lambert W functions. We investigate how stability of extinction and coexistence steady states is affected by the rate of predation, predator fecundity, and the parameter characterizing the strength of functional response. The results suggest that the extinction steady state can be stable for sufficiently high predation rate and for sufficiently small predator fecundity. Moreover, in certain parameter regimes, a stable extinction steady state can coexist with a stable prey-only equilibrium or with a stable coexistence equilibrium, and it is rather the initial conditions that determine whether prey and predator populations will be maintained at some steady level, or both of them will become extinct. Another possibility is for coexistence steady state to be unstable, in which case sustained periodic oscillations around it are observed. Numerical simulations are performed to illustrate the behavior for all dynamical regimes, and in each case a corresponding phase plane of the transformed system is presented to show a correspondence with stable and unstable extinction steady state

    Dynamic analysis of a Leslie–Gower-type predator–prey system with the fear effect and ratio-dependent Holling III functional response

    Get PDF
    In this paper, we extend a Leslie–Gower-type predator–prey system with ratio-dependent Holling III functional response considering the cost of antipredator defence due to fear. We study the impact of the fear effect on the model, and we find that many interesting dynamical properties of the model can occur when the fear effect is present. Firstly, the relationship between the fear coefficient K and the positive equilibrium point is introduced. Meanwhile, the existence of the Turing instability, the Hopf bifurcation, and the Turing–Hopf bifurcation are analyzed by some key bifurcation parameters. Next, a normal form for the Turing–Hopf bifurcation is calculated. Finally, numerical simulations are carried out to corroborate our theoretical results

    A Modified Holling-Tanner Model in Stochastic Environment

    Get PDF
    Recently, a modified version of the so called Holling-Tannermodel isintroduced in the ecological literature. A detailed account of the deterministic dynamicsof this model is presented. The growth rates of the prey and predator are then perturbedby Gaussian white noises to take into account the effect of fluctuating environment. Theresulting stochastic model is cultured by the technique of statistical linearization andcriteria for non-equilibrium fluctuation and stability arederived. Numerical simulationsare carried out. The implications of our analytical findingsare addressed critically

    Almost periodic solution of a diffusive mixed system with time delay and type III functional response

    Get PDF
    A delayed predator-prey model with diffusion and competition is proposed. Some sufficient conditions on uniform persistence of the model have been obtained. By applying LiapunovRazumikhin technique, we will point out, under almost periodic circumstances, a set of sufficient conditions that assure the existence and uniqueness of the positive almost periodic solution which is globally asymptotically stable
    corecore