36,509 research outputs found

    On a class of intersection graphs

    Full text link
    Given a directed graph D = (V,A) we define its intersection graph I(D) = (A,E) to be the graph having A as a node-set and two nodes of I(D) are adjacent if their corresponding arcs share a common node that is the tail of at least one of these arcs. We call these graphs facility location graphs since they arise from the classical uncapacitated facility location problem. In this paper we show that facility location graphs are hard to recognize and they are easy to recognize when the graph is triangle-free. We also determine the complexity of the vertex coloring, the stable set and the facility location problems on that class

    Robust Assignments via Ear Decompositions and Randomized Rounding

    Get PDF
    Many real-life planning problems require making a priori decisions before all parameters of the problem have been revealed. An important special case of such problem arises in scheduling problems, where a set of tasks needs to be assigned to the available set of machines or personnel (resources), in a way that all tasks have assigned resources, and no two tasks share the same resource. In its nominal form, the resulting computational problem becomes the \emph{assignment problem} on general bipartite graphs. This paper deals with a robust variant of the assignment problem modeling situations where certain edges in the corresponding graph are \emph{vulnerable} and may become unavailable after a solution has been chosen. The goal is to choose a minimum-cost collection of edges such that if any vulnerable edge becomes unavailable, the remaining part of the solution contains an assignment of all tasks. We present approximation results and hardness proofs for this type of problems, and establish several connections to well-known concepts from matching theory, robust optimization and LP-based techniques.Comment: Full version of ICALP 2016 pape

    The Quadratic Cycle Cover Problem: special cases and efficient bounds

    Get PDF
    The quadratic cycle cover problem is the problem of finding a set of node-disjoint cycles visiting all the nodes such that the total sum of interaction costs between consecutive arcs is minimized. In this paper we study the linearization problem for the quadratic cycle cover problem and related lower bounds. In particular, we derive various sufficient conditions for the quadratic cost matrix to be linearizable, and use these conditions to compute bounds. We also show how to use a sufficient condition for linearizability within an iterative bounding procedure. In each step, our algorithm computes the best equivalent representation of the quadratic cost matrix and its optimal linearizable matrix with respect to the given sufficient condition for linearizability. Further, we show that the classical Gilmore-Lawler type bound belongs to the family of linearization based bounds, and therefore apply the above mentioned iterative reformulation technique. We also prove that the linearization vectors resulting from this iterative approach satisfy the constant value property. The best among here introduced bounds outperform existing lower bounds when taking both quality and efficiency into account

    A Constant Approximation for Colorful k-Center

    Get PDF
    In this paper, we consider the colorful k-center problem, which is a generalization of the well-known k-center problem. Here, we are given red and blue points in a metric space, and a coverage requirement for each color. The goal is to find the smallest radius rho, such that with k balls of radius rho, the desired number of points of each color can be covered. We obtain a constant approximation for this problem in the Euclidean plane. We obtain this result by combining a "pseudo-approximation" algorithm that works in any metric space, and an approximation algorithm that works for a special class of instances in the plane. The latter algorithm uses a novel connection to a certain matching problem in graphs

    IMPACT: Investigation of Mobile-user Patterns Across University Campuses using WLAN Trace Analysis

    Full text link
    We conduct the most comprehensive study of WLAN traces to date. Measurements collected from four major university campuses are analyzed with the aim of developing fundamental understanding of realistic user behavior in wireless networks. Both individual user and inter-node (group) behaviors are investigated and two classes of metrics are devised to capture the underlying structure of such behaviors. For individual user behavior we observe distinct patterns in which most users are 'on' for a small fraction of the time, the number of access points visited is very small and the overall on-line user mobility is quite low. We clearly identify categories of heavy and light users. In general, users exhibit high degree of similarity over days and weeks. For group behavior, we define metrics for encounter patterns and friendship. Surprisingly, we find that a user, on average, encounters less than 6% of the network user population within a month, and that encounter and friendship relations are highly asymmetric. We establish that number of encounters follows a biPareto distribution, while friendship indexes follow an exponential distribution. We capture the encounter graph using a small world model, the characteristics of which reach steady state after only one day. We hope for our study to have a great impact on realistic modeling of network usage and mobility patterns in wireless networks.Comment: 16 pages, 31 figure

    Approximation Algorithms for Connected Maximum Cut and Related Problems

    Full text link
    An instance of the Connected Maximum Cut problem consists of an undirected graph G = (V, E) and the goal is to find a subset of vertices S \subseteq V that maximizes the number of edges in the cut \delta(S) such that the induced graph G[S] is connected. We present the first non-trivial \Omega(1/log n) approximation algorithm for the connected maximum cut problem in general graphs using novel techniques. We then extend our algorithm to an edge weighted case and obtain a poly-logarithmic approximation algorithm. Interestingly, in stark contrast to the classical max-cut problem, we show that the connected maximum cut problem remains NP-hard even on unweighted, planar graphs. On the positive side, we obtain a polynomial time approximation scheme for the connected maximum cut problem on planar graphs and more generally on graphs with bounded genus.Comment: 17 pages, Conference version to appear in ESA 201

    The matching polytope does not admit fully-polynomial size relaxation schemes

    Full text link
    The groundbreaking work of Rothvo{\ss} [arxiv:1311.2369] established that every linear program expressing the matching polytope has an exponential number of inequalities (formally, the matching polytope has exponential extension complexity). We generalize this result by deriving strong bounds on the polyhedral inapproximability of the matching polytope: for fixed 0<ε<10 < \varepsilon < 1, every polyhedral (1+ε/n)(1 + \varepsilon / n)-approximation requires an exponential number of inequalities, where nn is the number of vertices. This is sharp given the well-known ρ\rho-approximation of size O((nρ/(ρ1)))O(\binom{n}{\rho/(\rho-1)}) provided by the odd-sets of size up to ρ/(ρ1)\rho/(\rho-1). Thus matching is the first problem in PP, whose natural linear encoding does not admit a fully polynomial-size relaxation scheme (the polyhedral equivalent of an FPTAS), which provides a sharp separation from the polynomial-size relaxation scheme obtained e.g., via constant-sized odd-sets mentioned above. Our approach reuses ideas from Rothvo{\ss} [arxiv:1311.2369], however the main lower bounding technique is different. While the original proof is based on the hyperplane separation bound (also called the rectangle corruption bound), we employ the information-theoretic notion of common information as introduced in Braun and Pokutta [http://eccc.hpi-web.de/report/2013/056/], which allows to analyze perturbations of slack matrices. It turns out that the high extension complexity for the matching polytope stem from the same source of hardness as for the correlation polytope: a direct sum structure.Comment: 21 pages, 3 figure
    corecore