123 research outputs found

    The history of degenerate (bipartite) extremal graph problems

    Full text link
    This paper is a survey on Extremal Graph Theory, primarily focusing on the case when one of the excluded graphs is bipartite. On one hand we give an introduction to this field and also describe many important results, methods, problems, and constructions.Comment: 97 pages, 11 figures, many problems. This is the preliminary version of our survey presented in Erdos 100. In this version 2 only a citation was complete

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs

    Rainbow Generalizations of Ramsey Theory - A Dynamic Survey

    Get PDF
    In this work, we collect Ramsey-type results concerning rainbow edge colorings of graphs

    The approximate Loebl-Komlos-Sos conjecture and embedding trees in sparse graphs

    Full text link
    Loebl, Koml\'os and S\'os conjectured that every nn-vertex graph GG with at least n/2n/2 vertices of degree at least kk contains each tree TT of order k+1k+1 as a subgraph. We give a sketch of a proof of the approximate version of this conjecture for large values of kk. For our proof, we use a structural decomposition which can be seen as an analogue of Szemer\'edi's regularity lemma for possibly very sparse graphs. With this tool, each graph can be decomposed into four parts: a set of vertices of huge degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting certain expansion properties. We then exploit the properties of each of the parts of GG to embed a given tree TT. The purpose of this note is to highlight the key steps of our proof. Details can be found in [arXiv:1211.3050]

    Tight bounds towards a conjecture of Gallai

    Full text link
    We prove that for n>k3n>k\geq 3, if GG is an nn-vertex graph with chromatic number kk but any its proper subgraph has smaller chromatic number, then GG contains at most nk+3n-k+3 copies of cliques of size k1k-1. This answers a problem of Abbott and Zhou and provides a tight bound on a conjecture of Gallai

    Hypohamiltonian and almost hypohamiltonian graphs

    Get PDF
    This Dissertation is structured as follows. In Chapter 1, we give a short historical overview and define fundamental concepts. Chapter 2 contains a clear narrative of the progress made towards finding the smallest planar hypohamiltonian graph, with all of the necessary theoretical tools and techniques--especially Grinberg's Criterion. Consequences of this progress are distributed over all sections and form the leitmotif of this Dissertation. Chapter 2 also treats girth restrictions and hypohamiltonian graphs in the context of crossing numbers. Chapter 3 is a thorough discussion of the newly introduced almost hypohamiltonian graphs and their connection to hypohamiltonian graphs. Once more, the planar case plays an exceptional role. At the end of the chapter, we study almost hypotraceable graphs and Gallai's problem on longest paths. The latter leads to Chapter 4, wherein the connection between hypohamiltonicity and various problems related to longest paths and longest cycles are presented. Chapter 5 introduces and studies non-hamiltonian graphs in which every vertex-deleted subgraph is traceable, a class encompassing hypohamiltonian and hypotraceable graphs. We end with an outlook in Chapter 6, where we present a selection of open problems enriched with comments and partial results

    Replication in critical graphs and the persistence of monomial ideals

    Full text link
    Motivated by questions about square-free monomial ideals in polynomial rings, in 2010 Francisco et al. conjectured that for every positive integer k and every k-critical (i.e., critically k-chromatic) graph, there is a set of vertices whose replication produces a (k+1)-critical graph. (The replication of a set W of vertices of a graph is the operation that adds a copy of each vertex w in W, one at a time, and connects it to w and all its neighbours.) We disprove the conjecture by providing an infinite family of counterexamples. Furthermore, the smallest member of the family answers a question of Herzog and Hibi concerning the depth functions of square-free monomial ideals in polynomial rings, and a related question on the persistence property of such ideals
    corecore