2,296 research outputs found

    Existence Results for Some Damped Second-Order Volterra Integro-Differential Equations

    Full text link
    In this paper we make a subtle use of operator theory techniques and the well-known Schauder fixed-point principle to establish the existence of pseudo-almost automorphic solutions to some second-order damped integro-differential equations with pseudo-almost automorphic coefficients. In order to illustrate our main results, we will study the existence of pseudo-almost automorphic solutions to a structurally damped plate-like boundary value problem.Comment: 20 pages. arXiv admin note: substantial text overlap with arXiv:1402.563

    Global regularity and probabilistic schemes for free boundary surfaces of multivariate American derivatives and their Greeks

    Full text link
    In a rather general setting of multivariate stochastic volatility market models we derive global iterative probabilistic schemes for computing the free boundary and its Greeks for a generic class of American derivative models using front-fixing methods. Convergence is closely linked to a proof of global regularity of the free boundary surface

    Backstepping PDE Design: A Convex Optimization Approach

    Get PDF
    Abstract\u2014Backstepping design for boundary linear PDE is formulated as a convex optimization problem. Some classes of parabolic PDEs and a first-order hyperbolic PDE are studied, with particular attention to non-strict feedback structures. Based on the compactness of the Volterra and Fredholm-type operators involved, their Kernels are approximated via polynomial functions. The resulting Kernel-PDEs are optimized using Sumof- Squares (SOS) decomposition and solved via semidefinite programming, with sufficient precision to guarantee the stability of the system in the L2-norm. This formulation allows optimizing extra degrees of freedom where the Kernel-PDEs are included as constraints. Uniqueness and invertibility of the Fredholm-type transformation are proved for polynomial Kernels in the space of continuous functions. The effectiveness and limitations of the approach proposed are illustrated by numerical solutions of some Kernel-PDEs

    A De Giorgi Iteration-based Approach for the Establishment of ISS Properties for Burgers' Equation with Boundary and In-domain Disturbances

    Get PDF
    This note addresses input-to-state stability (ISS) properties with respect to (w.r.t.) boundary and in-domain disturbances for Burgers' equation. The developed approach is a combination of the method of De~Giorgi iteration and the technique of Lyapunov functionals by adequately splitting the original problem into two subsystems. The ISS properties in L2L^2-norm for Burgers' equation have been established using this method. Moreover, as an application of De~Giorgi iteration, ISS in L∞L^\infty-norm w.r.t. in-domain disturbances and actuation errors in boundary feedback control for a 1-DD {linear} {unstable reaction-diffusion equation} have also been established. It is the first time that the method of De~Giorgi iteration is introduced in the ISS theory for infinite dimensional systems, and the developed method can be generalized for tackling some problems on multidimensional spatial domains and to a wider class of nonlinear {partial differential equations (PDEs)Comment: This paper has been accepted for publication by IEEE Trans. on Automatic Control, and is available at http://dx.doi.org/10.1109/TAC.2018.2880160. arXiv admin note: substantial text overlap with arXiv:1710.0991
    • …
    corecore