8,784 research outputs found

    On a User-Centric Base Station Cooperation Scheme for Reliable Communications

    Get PDF
    In this paper, we describe CoMP2flex, a user-centric base station (BS) cooperation scheme that provides improvements in reliability of both uplink (UL) and downlink (DL) communications of wireless cellular networks. CoMP2flex supports not only cooperation of two BSs with same direction of traffic but also cooperation of two BSs serving bidirectional traffic. The reliability performance of CoMP2flex is shown with numerical simulations and analytical expressions. We quantify and numerically validate the performance of the greedy BS pairing algorithm by comparing maximum weight matching methods, implemented as the Edmonds matching algorithm for weighted graphs.Comment: to be presented in IEEE VTC 2017 Sprin

    Ultra reliable low latency communication in MTC network

    Get PDF
    Abstract. Internet of things is in progress to build the smart society, and wireless networks are critical enablers for many of its use cases. In this thesis, we present some of the vital concept of diversity and multi-connectivity to achieve ultra-reliability and low latency for machine type wireless communication networks. Diversity is one of the critical factors to deal with fading channel impairments, which in term is a crucial factor to achieve targeted outage probabilities and try to reach out such requirement of five 9’s as defined by some standardization bodies. We evaluate an interference-limited network composed of multiple remote radio heads connected to the user equipment. Some of those links are allowed to cooperate, thus reducing interference, or to perform more elaborated strategies such as selection combining or maximal ratio combining. Therefore, we derive their respective closed-form analytical solutions for respective outage probabilities. We provide extensive numerical analysis and discuss the gains of cooperation and multi-connectivity enabled to be a centralized radio access network

    Ubiquitous Cell-Free Massive MIMO Communications

    Get PDF
    Since the first cellular networks were trialled in the 1970s, we have witnessed an incredible wireless revolution. From 1G to 4G, the massive traffic growth has been managed by a combination of wider bandwidths, refined radio interfaces, and network densification, namely increasing the number of antennas per site. Due its cost-efficiency, the latter has contributed the most. Massive MIMO (multiple-input multiple-output) is a key 5G technology that uses massive antenna arrays to provide a very high beamforming gain and spatially multiplexing of users, and hence, increases the spectral and energy efficiency. It constitutes a centralized solution to densify a network, and its performance is limited by the inter-cell interference inherent in its cell-centric design. Conversely, ubiquitous cell-free Massive MIMO refers to a distributed Massive MIMO system implementing coherent user-centric transmission to overcome the inter-cell interference limitation in cellular networks and provide additional macro-diversity. These features, combined with the system scalability inherent in the Massive MIMO design, distinguishes ubiquitous cell-free Massive MIMO from prior coordinated distributed wireless systems. In this article, we investigate the enormous potential of this promising technology while addressing practical deployment issues to deal with the increased back/front-hauling overhead deriving from the signal co-processing.Comment: Published in EURASIP Journal on Wireless Communications and Networking on August 5, 201
    corecore